Loading…
Achieving high aspect ratio in plasmonic lithography for practical applications with sub-20 nm half pitch
Plasmonic lithography, which exploits a bowtie nanoaperture (BNA) for the purpose of subwavelength near-field focusing, has the capability of high-resolution patterning. However, the ultra-small feature size is achieved at the price of sharply decay of the surface plasmon waves (SPWs) in the photore...
Saved in:
Published in: | Optics express 2022-06, Vol.30 (12), p.20589-20604 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1425-491440087c6a011a3fe92f77514601d4f02cc3ffd3bdccd6aaad0ee01b7e7f8b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c1425-491440087c6a011a3fe92f77514601d4f02cc3ffd3bdccd6aaad0ee01b7e7f8b3 |
container_end_page | 20604 |
container_issue | 12 |
container_start_page | 20589 |
container_title | Optics express |
container_volume | 30 |
creator | Han, Dandan Wei, Yayi |
description | Plasmonic lithography, which exploits a bowtie nanoaperture (BNA) for the purpose of subwavelength near-field focusing, has the capability of high-resolution patterning. However, the ultra-small feature size is achieved at the price of sharply decay of the surface plasmon waves (SPWs) in the photoresist (PR) layer, which directly leads to some unfavorable patterning issues, such as non-uniformity and shallow pattern depth even over small exposure areas. In this work, a special hybrid plasmonic waveguide (HPW) patterning system, which is composed of the plasmonic BNA-PR layer-silver reflector, is designed to facilitate high spatial frequency selection and amplify the evanescent field in the PR layer. Theoretical calculations indicate that the antisymmetric coupled SPWs and plasmonic waveguide modes excited by the HPW structure can remove the exponential decay and ensure uniform exposure over the entire depth of the PR layer. Importantly, the hyperbolic decaying characteristic of the SPWs in the PR layer plays a noticeable role in the improvement of achievable resolution, depth-of-field, and line array pattern profile. It is worth to note that the uniform periodic patterns in sub-20 nm feature can be achieved with high aspect ratio. Additionally, further numerical simulation results are presented to demonstrate the achievement of spatial frequency selection of high-k mode in HPW structure by controlling the PR thickness and gap size. Our findings may provide a new perspective on the manufacture of surface nanostructures and broaden the potential promising applications of plasmonic lithography in nanoscale patterning. |
doi_str_mv | 10.1364/OE.457995 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2724583695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2724583695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1425-491440087c6a011a3fe92f77514601d4f02cc3ffd3bdccd6aaad0ee01b7e7f8b3</originalsourceid><addsrcrecordid>eNpNkLFOwzAYhC0EEqUw8AYeYUixEyeux6oqBalSF5itP45dGzmxsVNQ356gMjDdDd-dTofQPSULWjXsab9ZsJoLUV-gGSWCFYws-eU_f41ucv4ghDIu-Ay5lbJOf7nhgK07WAw5ajXiBKML2A04esh9GJzC3o02HBJEe8ImJBwTqNEp8Bhi9JOZEkPG3xOG87EtSoKHHlvwBkc3KnuLrgz4rO_-dI7enzdv65dit9--rle7QlFW1gUTlDEyDVUNEEqhMlqUhvOasobQjhlSKlUZ01Vtp1TXAEBHtCa05ZqbZVvN0cO5N6bwedR5lL3LSnsPgw7HLEtesnpZNaKe0MczqlLIOWkjY3I9pJOkRP7eKfcbeb6z-gFuJWi3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724583695</pqid></control><display><type>article</type><title>Achieving high aspect ratio in plasmonic lithography for practical applications with sub-20 nm half pitch</title><source>EZB Free E-Journals</source><creator>Han, Dandan ; Wei, Yayi</creator><creatorcontrib>Han, Dandan ; Wei, Yayi</creatorcontrib><description>Plasmonic lithography, which exploits a bowtie nanoaperture (BNA) for the purpose of subwavelength near-field focusing, has the capability of high-resolution patterning. However, the ultra-small feature size is achieved at the price of sharply decay of the surface plasmon waves (SPWs) in the photoresist (PR) layer, which directly leads to some unfavorable patterning issues, such as non-uniformity and shallow pattern depth even over small exposure areas. In this work, a special hybrid plasmonic waveguide (HPW) patterning system, which is composed of the plasmonic BNA-PR layer-silver reflector, is designed to facilitate high spatial frequency selection and amplify the evanescent field in the PR layer. Theoretical calculations indicate that the antisymmetric coupled SPWs and plasmonic waveguide modes excited by the HPW structure can remove the exponential decay and ensure uniform exposure over the entire depth of the PR layer. Importantly, the hyperbolic decaying characteristic of the SPWs in the PR layer plays a noticeable role in the improvement of achievable resolution, depth-of-field, and line array pattern profile. It is worth to note that the uniform periodic patterns in sub-20 nm feature can be achieved with high aspect ratio. Additionally, further numerical simulation results are presented to demonstrate the achievement of spatial frequency selection of high-k mode in HPW structure by controlling the PR thickness and gap size. Our findings may provide a new perspective on the manufacture of surface nanostructures and broaden the potential promising applications of plasmonic lithography in nanoscale patterning.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.457995</identifier><language>eng</language><ispartof>Optics express, 2022-06, Vol.30 (12), p.20589-20604</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1425-491440087c6a011a3fe92f77514601d4f02cc3ffd3bdccd6aaad0ee01b7e7f8b3</citedby><cites>FETCH-LOGICAL-c1425-491440087c6a011a3fe92f77514601d4f02cc3ffd3bdccd6aaad0ee01b7e7f8b3</cites><orcidid>0000-0002-6560-3887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Han, Dandan</creatorcontrib><creatorcontrib>Wei, Yayi</creatorcontrib><title>Achieving high aspect ratio in plasmonic lithography for practical applications with sub-20 nm half pitch</title><title>Optics express</title><description>Plasmonic lithography, which exploits a bowtie nanoaperture (BNA) for the purpose of subwavelength near-field focusing, has the capability of high-resolution patterning. However, the ultra-small feature size is achieved at the price of sharply decay of the surface plasmon waves (SPWs) in the photoresist (PR) layer, which directly leads to some unfavorable patterning issues, such as non-uniformity and shallow pattern depth even over small exposure areas. In this work, a special hybrid plasmonic waveguide (HPW) patterning system, which is composed of the plasmonic BNA-PR layer-silver reflector, is designed to facilitate high spatial frequency selection and amplify the evanescent field in the PR layer. Theoretical calculations indicate that the antisymmetric coupled SPWs and plasmonic waveguide modes excited by the HPW structure can remove the exponential decay and ensure uniform exposure over the entire depth of the PR layer. Importantly, the hyperbolic decaying characteristic of the SPWs in the PR layer plays a noticeable role in the improvement of achievable resolution, depth-of-field, and line array pattern profile. It is worth to note that the uniform periodic patterns in sub-20 nm feature can be achieved with high aspect ratio. Additionally, further numerical simulation results are presented to demonstrate the achievement of spatial frequency selection of high-k mode in HPW structure by controlling the PR thickness and gap size. Our findings may provide a new perspective on the manufacture of surface nanostructures and broaden the potential promising applications of plasmonic lithography in nanoscale patterning.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkLFOwzAYhC0EEqUw8AYeYUixEyeux6oqBalSF5itP45dGzmxsVNQ356gMjDdDd-dTofQPSULWjXsab9ZsJoLUV-gGSWCFYws-eU_f41ucv4ghDIu-Ay5lbJOf7nhgK07WAw5ajXiBKML2A04esh9GJzC3o02HBJEe8ImJBwTqNEp8Bhi9JOZEkPG3xOG87EtSoKHHlvwBkc3KnuLrgz4rO_-dI7enzdv65dit9--rle7QlFW1gUTlDEyDVUNEEqhMlqUhvOasobQjhlSKlUZ01Vtp1TXAEBHtCa05ZqbZVvN0cO5N6bwedR5lL3LSnsPgw7HLEtesnpZNaKe0MczqlLIOWkjY3I9pJOkRP7eKfcbeb6z-gFuJWi3</recordid><startdate>20220606</startdate><enddate>20220606</enddate><creator>Han, Dandan</creator><creator>Wei, Yayi</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6560-3887</orcidid></search><sort><creationdate>20220606</creationdate><title>Achieving high aspect ratio in plasmonic lithography for practical applications with sub-20 nm half pitch</title><author>Han, Dandan ; Wei, Yayi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1425-491440087c6a011a3fe92f77514601d4f02cc3ffd3bdccd6aaad0ee01b7e7f8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Dandan</creatorcontrib><creatorcontrib>Wei, Yayi</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Dandan</au><au>Wei, Yayi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving high aspect ratio in plasmonic lithography for practical applications with sub-20 nm half pitch</atitle><jtitle>Optics express</jtitle><date>2022-06-06</date><risdate>2022</risdate><volume>30</volume><issue>12</issue><spage>20589</spage><epage>20604</epage><pages>20589-20604</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Plasmonic lithography, which exploits a bowtie nanoaperture (BNA) for the purpose of subwavelength near-field focusing, has the capability of high-resolution patterning. However, the ultra-small feature size is achieved at the price of sharply decay of the surface plasmon waves (SPWs) in the photoresist (PR) layer, which directly leads to some unfavorable patterning issues, such as non-uniformity and shallow pattern depth even over small exposure areas. In this work, a special hybrid plasmonic waveguide (HPW) patterning system, which is composed of the plasmonic BNA-PR layer-silver reflector, is designed to facilitate high spatial frequency selection and amplify the evanescent field in the PR layer. Theoretical calculations indicate that the antisymmetric coupled SPWs and plasmonic waveguide modes excited by the HPW structure can remove the exponential decay and ensure uniform exposure over the entire depth of the PR layer. Importantly, the hyperbolic decaying characteristic of the SPWs in the PR layer plays a noticeable role in the improvement of achievable resolution, depth-of-field, and line array pattern profile. It is worth to note that the uniform periodic patterns in sub-20 nm feature can be achieved with high aspect ratio. Additionally, further numerical simulation results are presented to demonstrate the achievement of spatial frequency selection of high-k mode in HPW structure by controlling the PR thickness and gap size. Our findings may provide a new perspective on the manufacture of surface nanostructures and broaden the potential promising applications of plasmonic lithography in nanoscale patterning.</abstract><doi>10.1364/OE.457995</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6560-3887</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2022-06, Vol.30 (12), p.20589-20604 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_proquest_miscellaneous_2724583695 |
source | EZB Free E-Journals |
title | Achieving high aspect ratio in plasmonic lithography for practical applications with sub-20 nm half pitch |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A24%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20high%20aspect%20ratio%20in%20plasmonic%20lithography%20for%20practical%20applications%20with%20sub-20%20nm%20half%20pitch&rft.jtitle=Optics%20express&rft.au=Han,%20Dandan&rft.date=2022-06-06&rft.volume=30&rft.issue=12&rft.spage=20589&rft.epage=20604&rft.pages=20589-20604&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.457995&rft_dat=%3Cproquest_cross%3E2724583695%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1425-491440087c6a011a3fe92f77514601d4f02cc3ffd3bdccd6aaad0ee01b7e7f8b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2724583695&rft_id=info:pmid/&rfr_iscdi=true |