Loading…

Time-overlapping structured-light projection: high performance on 3D shape measurement for complex dynamic scenes

High-speed three-dimensional (3D) shape measurement has been continuously researched due to the demand for analyzing dynamic behavior in transient scenes. In this work, a time-overlapping structured-light 3D shape measuring technique is proposed to realize high-speed and high-performance measurement...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2022-06, Vol.30 (13), p.22467-22486
Main Authors: Wu, Zhoujie, Guo, Wenbo, Zhang, Qican, Wang, Haoran, Li, Xunren, Chen, Zhengdong
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-speed three-dimensional (3D) shape measurement has been continuously researched due to the demand for analyzing dynamic behavior in transient scenes. In this work, a time-overlapping structured-light 3D shape measuring technique is proposed to realize high-speed and high-performance measurement on complex dynamic scenes. Time-overlapping structured-light projection is presented to maximumly reduce the information redundancy in temporal sequences and improve the measuring efficiency; generalized tripartite phase unwrapping (Tri-PU) is used to ensure the measuring robustness; fringe period extension is achieved by improving overlapping rate to further double the encoding fringe periods for higher measuring accuracy. Based on the proposed measuring technique, one new pixel-to-pixel and unambiguous 3D reconstruction result can be updated with three newly required patterns at a reconstruction rate of 3174 fps. Three transient scenes including collapsing wood blocks struck by a flying arrow, free-falling foam snowflakes and flying water balloon towards metal grids were measured to verify the high performance of the proposed method in various complex dynamic scenes.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.460088