Loading…
Connectomic analysis of thalamus-driven disinhibition in cortical layer 4
Sensory signals are transmitted via the thalamus primarily to layer 4 (L4) of the primary sensory cortices. While information about average neuronal connectivity in L4 is available, its detailed higher-order circuit structure is not known. Here, we used three-dimensional electron microscopy for a co...
Saved in:
Published in: | Cell reports (Cambridge) 2022-10, Vol.41 (2), p.111476-111476, Article 111476 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c385t-1dc818a1660ab0b8bd60c54c1e33aaa10c9da137234a91dd9e0376c93dcab0ae3 |
---|---|
cites | cdi_FETCH-LOGICAL-c385t-1dc818a1660ab0b8bd60c54c1e33aaa10c9da137234a91dd9e0376c93dcab0ae3 |
container_end_page | 111476 |
container_issue | 2 |
container_start_page | 111476 |
container_title | Cell reports (Cambridge) |
container_volume | 41 |
creator | Hua, Yunfeng Loomba, Sahil Pawlak, Verena Voit, Kay-Michael Laserstein, Philip Boergens, Kevin M. Wallace, Damian J. Kerr, Jason N.D. Helmstaedter, Moritz |
description | Sensory signals are transmitted via the thalamus primarily to layer 4 (L4) of the primary sensory cortices. While information about average neuronal connectivity in L4 is available, its detailed higher-order circuit structure is not known. Here, we used three-dimensional electron microscopy for a connectomic analysis of the thalamus-driven inhibitory network in L4. We find that thalamic input drives a subset of interneurons with high specificity, which in turn target excitatory neurons with subtype specificity. These interneurons create a directed disinhibitory network directly driven by the thalamic input. Neuronal activity recordings show that strong synchronous sensory activation yields about 1.5-fold stronger activation of star pyramidal cells than spiny stellates, in line with differential windows of opportunity for activation of excitatory neurons in the thalamus-driven disinhibitory circuit model. With this, we have identified a high degree of specialization of the microcircuitry in L4 of the primary sensory cortex.
[Display omitted]
•Thalamus directly drives a disinhibitory circuit in cortical layer 4•Distinct interneuron input to excitatory neuron subtypes in layer 4•Temporally precise windows of activation within layer 4 predicted from connectome•Functional recordings support such differential activation windows within layer 4
Hua et al. used three-dimensional electron microscopy to determine the inhibitory interneuron connectome within layer 4 of mouse primary somatosensory cortex, discovering a directly thalamus-driven disinhibitory circuitry with target specificity for the excitatory neuronal subtypes. Functional recordings confirm the differential temporal activation windows created by this circuit. |
doi_str_mv | 10.1016/j.celrep.2022.111476 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2724585081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124722013262</els_id><sourcerecordid>2724585081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-1dc818a1660ab0b8bd60c54c1e33aaa10c9da137234a91dd9e0376c93dcab0ae3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gYccveyaSfbzIkjxo1Dwoucwm0xpyjapybbQf--W9eDJucwcnveFeRi7B5GDgOpxlxvqIx1yKaTMAaCoqys2kxIgA1nU13_uW7ZIaSfGqQRAW8zYahm8JzOEvTMcPfbn5BIPGz5sscf9MWU2uhN5bl1yfus6N7jgufPchDg4gz3v8UyRF3fsZoN9osXvnrOv15fP5Xu2_nhbLZ_XmVFNOWRgTQMNQlUJ7ETXdLYSpiwMkFKICMK0FkHVUhXYgrUtCVVXplXWjDySmrOHqfcQw_eR0qD3Lo0KevQUjknLWhZlU4oGRrSYUBNDSpE2-hDdHuNZg9AXeXqnJ3n6Ik9P8sbY0xSj8Y2To6iTceQNWRdHVdoG93_BD2Oeeg4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724585081</pqid></control><display><type>article</type><title>Connectomic analysis of thalamus-driven disinhibition in cortical layer 4</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Hua, Yunfeng ; Loomba, Sahil ; Pawlak, Verena ; Voit, Kay-Michael ; Laserstein, Philip ; Boergens, Kevin M. ; Wallace, Damian J. ; Kerr, Jason N.D. ; Helmstaedter, Moritz</creator><creatorcontrib>Hua, Yunfeng ; Loomba, Sahil ; Pawlak, Verena ; Voit, Kay-Michael ; Laserstein, Philip ; Boergens, Kevin M. ; Wallace, Damian J. ; Kerr, Jason N.D. ; Helmstaedter, Moritz</creatorcontrib><description>Sensory signals are transmitted via the thalamus primarily to layer 4 (L4) of the primary sensory cortices. While information about average neuronal connectivity in L4 is available, its detailed higher-order circuit structure is not known. Here, we used three-dimensional electron microscopy for a connectomic analysis of the thalamus-driven inhibitory network in L4. We find that thalamic input drives a subset of interneurons with high specificity, which in turn target excitatory neurons with subtype specificity. These interneurons create a directed disinhibitory network directly driven by the thalamic input. Neuronal activity recordings show that strong synchronous sensory activation yields about 1.5-fold stronger activation of star pyramidal cells than spiny stellates, in line with differential windows of opportunity for activation of excitatory neurons in the thalamus-driven disinhibitory circuit model. With this, we have identified a high degree of specialization of the microcircuitry in L4 of the primary sensory cortex.
[Display omitted]
•Thalamus directly drives a disinhibitory circuit in cortical layer 4•Distinct interneuron input to excitatory neuron subtypes in layer 4•Temporally precise windows of activation within layer 4 predicted from connectome•Functional recordings support such differential activation windows within layer 4
Hua et al. used three-dimensional electron microscopy to determine the inhibitory interneuron connectome within layer 4 of mouse primary somatosensory cortex, discovering a directly thalamus-driven disinhibitory circuitry with target specificity for the excitatory neuronal subtypes. Functional recordings confirm the differential temporal activation windows created by this circuit.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2022.111476</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>circuits ; connectomics ; disinhibition ; electron microscopy ; inhibition ; sensory cortex</subject><ispartof>Cell reports (Cambridge), 2022-10, Vol.41 (2), p.111476-111476, Article 111476</ispartof><rights>2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-1dc818a1660ab0b8bd60c54c1e33aaa10c9da137234a91dd9e0376c93dcab0ae3</citedby><cites>FETCH-LOGICAL-c385t-1dc818a1660ab0b8bd60c54c1e33aaa10c9da137234a91dd9e0376c93dcab0ae3</cites><orcidid>0000-0001-7973-0767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hua, Yunfeng</creatorcontrib><creatorcontrib>Loomba, Sahil</creatorcontrib><creatorcontrib>Pawlak, Verena</creatorcontrib><creatorcontrib>Voit, Kay-Michael</creatorcontrib><creatorcontrib>Laserstein, Philip</creatorcontrib><creatorcontrib>Boergens, Kevin M.</creatorcontrib><creatorcontrib>Wallace, Damian J.</creatorcontrib><creatorcontrib>Kerr, Jason N.D.</creatorcontrib><creatorcontrib>Helmstaedter, Moritz</creatorcontrib><title>Connectomic analysis of thalamus-driven disinhibition in cortical layer 4</title><title>Cell reports (Cambridge)</title><description>Sensory signals are transmitted via the thalamus primarily to layer 4 (L4) of the primary sensory cortices. While information about average neuronal connectivity in L4 is available, its detailed higher-order circuit structure is not known. Here, we used three-dimensional electron microscopy for a connectomic analysis of the thalamus-driven inhibitory network in L4. We find that thalamic input drives a subset of interneurons with high specificity, which in turn target excitatory neurons with subtype specificity. These interneurons create a directed disinhibitory network directly driven by the thalamic input. Neuronal activity recordings show that strong synchronous sensory activation yields about 1.5-fold stronger activation of star pyramidal cells than spiny stellates, in line with differential windows of opportunity for activation of excitatory neurons in the thalamus-driven disinhibitory circuit model. With this, we have identified a high degree of specialization of the microcircuitry in L4 of the primary sensory cortex.
[Display omitted]
•Thalamus directly drives a disinhibitory circuit in cortical layer 4•Distinct interneuron input to excitatory neuron subtypes in layer 4•Temporally precise windows of activation within layer 4 predicted from connectome•Functional recordings support such differential activation windows within layer 4
Hua et al. used three-dimensional electron microscopy to determine the inhibitory interneuron connectome within layer 4 of mouse primary somatosensory cortex, discovering a directly thalamus-driven disinhibitory circuitry with target specificity for the excitatory neuronal subtypes. Functional recordings confirm the differential temporal activation windows created by this circuit.</description><subject>circuits</subject><subject>connectomics</subject><subject>disinhibition</subject><subject>electron microscopy</subject><subject>inhibition</subject><subject>sensory cortex</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGr_gYccveyaSfbzIkjxo1Dwoucwm0xpyjapybbQf--W9eDJucwcnveFeRi7B5GDgOpxlxvqIx1yKaTMAaCoqys2kxIgA1nU13_uW7ZIaSfGqQRAW8zYahm8JzOEvTMcPfbn5BIPGz5sscf9MWU2uhN5bl1yfus6N7jgufPchDg4gz3v8UyRF3fsZoN9osXvnrOv15fP5Xu2_nhbLZ_XmVFNOWRgTQMNQlUJ7ETXdLYSpiwMkFKICMK0FkHVUhXYgrUtCVVXplXWjDySmrOHqfcQw_eR0qD3Lo0KevQUjknLWhZlU4oGRrSYUBNDSpE2-hDdHuNZg9AXeXqnJ3n6Ik9P8sbY0xSj8Y2To6iTceQNWRdHVdoG93_BD2Oeeg4</recordid><startdate>20221011</startdate><enddate>20221011</enddate><creator>Hua, Yunfeng</creator><creator>Loomba, Sahil</creator><creator>Pawlak, Verena</creator><creator>Voit, Kay-Michael</creator><creator>Laserstein, Philip</creator><creator>Boergens, Kevin M.</creator><creator>Wallace, Damian J.</creator><creator>Kerr, Jason N.D.</creator><creator>Helmstaedter, Moritz</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7973-0767</orcidid></search><sort><creationdate>20221011</creationdate><title>Connectomic analysis of thalamus-driven disinhibition in cortical layer 4</title><author>Hua, Yunfeng ; Loomba, Sahil ; Pawlak, Verena ; Voit, Kay-Michael ; Laserstein, Philip ; Boergens, Kevin M. ; Wallace, Damian J. ; Kerr, Jason N.D. ; Helmstaedter, Moritz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-1dc818a1660ab0b8bd60c54c1e33aaa10c9da137234a91dd9e0376c93dcab0ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>circuits</topic><topic>connectomics</topic><topic>disinhibition</topic><topic>electron microscopy</topic><topic>inhibition</topic><topic>sensory cortex</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hua, Yunfeng</creatorcontrib><creatorcontrib>Loomba, Sahil</creatorcontrib><creatorcontrib>Pawlak, Verena</creatorcontrib><creatorcontrib>Voit, Kay-Michael</creatorcontrib><creatorcontrib>Laserstein, Philip</creatorcontrib><creatorcontrib>Boergens, Kevin M.</creatorcontrib><creatorcontrib>Wallace, Damian J.</creatorcontrib><creatorcontrib>Kerr, Jason N.D.</creatorcontrib><creatorcontrib>Helmstaedter, Moritz</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hua, Yunfeng</au><au>Loomba, Sahil</au><au>Pawlak, Verena</au><au>Voit, Kay-Michael</au><au>Laserstein, Philip</au><au>Boergens, Kevin M.</au><au>Wallace, Damian J.</au><au>Kerr, Jason N.D.</au><au>Helmstaedter, Moritz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connectomic analysis of thalamus-driven disinhibition in cortical layer 4</atitle><jtitle>Cell reports (Cambridge)</jtitle><date>2022-10-11</date><risdate>2022</risdate><volume>41</volume><issue>2</issue><spage>111476</spage><epage>111476</epage><pages>111476-111476</pages><artnum>111476</artnum><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>Sensory signals are transmitted via the thalamus primarily to layer 4 (L4) of the primary sensory cortices. While information about average neuronal connectivity in L4 is available, its detailed higher-order circuit structure is not known. Here, we used three-dimensional electron microscopy for a connectomic analysis of the thalamus-driven inhibitory network in L4. We find that thalamic input drives a subset of interneurons with high specificity, which in turn target excitatory neurons with subtype specificity. These interneurons create a directed disinhibitory network directly driven by the thalamic input. Neuronal activity recordings show that strong synchronous sensory activation yields about 1.5-fold stronger activation of star pyramidal cells than spiny stellates, in line with differential windows of opportunity for activation of excitatory neurons in the thalamus-driven disinhibitory circuit model. With this, we have identified a high degree of specialization of the microcircuitry in L4 of the primary sensory cortex.
[Display omitted]
•Thalamus directly drives a disinhibitory circuit in cortical layer 4•Distinct interneuron input to excitatory neuron subtypes in layer 4•Temporally precise windows of activation within layer 4 predicted from connectome•Functional recordings support such differential activation windows within layer 4
Hua et al. used three-dimensional electron microscopy to determine the inhibitory interneuron connectome within layer 4 of mouse primary somatosensory cortex, discovering a directly thalamus-driven disinhibitory circuitry with target specificity for the excitatory neuronal subtypes. Functional recordings confirm the differential temporal activation windows created by this circuit.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.celrep.2022.111476</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7973-0767</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2211-1247 |
ispartof | Cell reports (Cambridge), 2022-10, Vol.41 (2), p.111476-111476, Article 111476 |
issn | 2211-1247 2211-1247 |
language | eng |
recordid | cdi_proquest_miscellaneous_2724585081 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | circuits connectomics disinhibition electron microscopy inhibition sensory cortex |
title | Connectomic analysis of thalamus-driven disinhibition in cortical layer 4 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A36%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connectomic%20analysis%20of%20thalamus-driven%20disinhibition%20in%20cortical%20layer%204&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Hua,%20Yunfeng&rft.date=2022-10-11&rft.volume=41&rft.issue=2&rft.spage=111476&rft.epage=111476&rft.pages=111476-111476&rft.artnum=111476&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2022.111476&rft_dat=%3Cproquest_cross%3E2724585081%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-1dc818a1660ab0b8bd60c54c1e33aaa10c9da137234a91dd9e0376c93dcab0ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2724585081&rft_id=info:pmid/&rfr_iscdi=true |