Loading…

The use of boron based materials on efficiency of environmentally friendly porous ceramics

In this study, the use of boron-based materials on efficiency of environmentally friendly porous ceramics was investigated. In this context, a glaze formulation was created that uses high amounts of frit and sintered at low temperatures. Boric acid and colemanite were added to glaze formulations and...

Full description

Saved in:
Bibliographic Details
Published in:Environmental research 2023-01, Vol.216 (Pt 1), p.114454-114454, Article 114454
Main Authors: Gol, Fatma, Kacar, Emre, Saritas, Zeynep Gizem, Cibuk, Selin, Ture, Cigdem, Arslan, Melek, Sen, Fatih
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, the use of boron-based materials on efficiency of environmentally friendly porous ceramics was investigated. In this context, a glaze formulation was created that uses high amounts of frit and sintered at low temperatures. Boric acid and colemanite were added to glaze formulations and different alternative formulations were created by reducing the frit percentage. These materials were added to these glaze formulations in two different ways, calcined and raw. The glaze mixtures obtained from the formulations were applied on the ceramic body and fired at 950-1000-1020-1100-1200 °C in the laboratory oven. Crystal phase structures of glaze samples containing boric acid and colemanite were analyzed by X-Ray Crystallography (XRD) method. The surface properties and characterizations of the obtained samples were examined by scanning electron microscopy (SEM). Differential Thermal Analysis and Thermogravimetric analysis (DTA/TG) were performed to determine their thermal behavior and mass loss. As a result of the analysis, it was observed that boron derivatives are a good flux agent and do not have a negative effect on the surface and other technical properties of the glaze. In the formulations of glazes with high frit content and processed at low temperatures, the percentage of frit has been reduced and costs have been improved. Also, energy costs were improved with the reduction in firing temperatures. Considering the energy and raw material costs of this study, it is predicted that high efficiency will be achieved in the process. •Different glaze formulations with frit additives containing boron and colemanite were formed and fired at different temperatures.•The presence of dendritic structures supports that the melting point decreases and the strength increases.•According to the hardness results, it was determined that high-strength products could be obtained at low operating temperatures.•In ceramics containing colemanite and boric acid, unit costs decreased by 40–50%.
ISSN:0013-9351
1096-0953
DOI:10.1016/j.envres.2022.114454