Loading…
Defect cluster formation in M sub(2)O sub(3)-doped cubic ZrO sub(2)
Atomistic simulation calculations based on energy minimization techniques have been used to study the energetics associated with M sub(2)O sub(3) solution in ZrO sub(2). Results predict that the binding energy of an oxygen vacancy to one or two substitutional cations is a strong function of dopant c...
Saved in:
Published in: | Solid state ionics 2000-02, Vol.128 (1-4), p.243-254 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 254 |
container_issue | 1-4 |
container_start_page | 243 |
container_title | Solid state ionics |
container_volume | 128 |
creator | Zacate, Matthew O Minervini, Licia Bradfield, Daniel J Grimes, Robin W Sickafus, Kurt E |
description | Atomistic simulation calculations based on energy minimization techniques have been used to study the energetics associated with M sub(2)O sub(3) solution in ZrO sub(2). Results predict that the binding energy of an oxygen vacancy to one or two substitutional cations is a strong function of dopant cation radius. Oxygen vacancies occupy sites that are first neighbour with respect to small dopants whereas oxygen vacancies are located in second neighbour sites with respect to large dopants. The crossover occurs at approximately Sc super(3+), which also exhibits the smallest binding energy. This behaviour is a consequence of long-range relaxation of the oxygen sublattice. The model is validated by comparing predicted lattice parameters of M sub(2)O sub(3):ZrO sub(2) solid solutions with experimental data. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_27261472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27261472</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_272614723</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEMCtafd8gkdiikiSTdq-IiXZxcSpreQiRtam7y_oL0AZy-4ZwVyVgpVcGVqDZki_hmjElRyYzUFxjARGpcwgiBDj6MOlo_UTvRB8XUnXje_BR50fsZempSZw19hWbJe7IetEM4LO7I8XZ91vdiDv6TAGM7WjTgnJ7AJ2y54rI8Ky7-Hr_vwjo6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27261472</pqid></control><display><type>article</type><title>Defect cluster formation in M sub(2)O sub(3)-doped cubic ZrO sub(2)</title><source>ScienceDirect Freedom Collection</source><creator>Zacate, Matthew O ; Minervini, Licia ; Bradfield, Daniel J ; Grimes, Robin W ; Sickafus, Kurt E</creator><creatorcontrib>Zacate, Matthew O ; Minervini, Licia ; Bradfield, Daniel J ; Grimes, Robin W ; Sickafus, Kurt E</creatorcontrib><description>Atomistic simulation calculations based on energy minimization techniques have been used to study the energetics associated with M sub(2)O sub(3) solution in ZrO sub(2). Results predict that the binding energy of an oxygen vacancy to one or two substitutional cations is a strong function of dopant cation radius. Oxygen vacancies occupy sites that are first neighbour with respect to small dopants whereas oxygen vacancies are located in second neighbour sites with respect to large dopants. The crossover occurs at approximately Sc super(3+), which also exhibits the smallest binding energy. This behaviour is a consequence of long-range relaxation of the oxygen sublattice. The model is validated by comparing predicted lattice parameters of M sub(2)O sub(3):ZrO sub(2) solid solutions with experimental data.</description><identifier>ISSN: 0167-2738</identifier><language>eng</language><ispartof>Solid state ionics, 2000-02, Vol.128 (1-4), p.243-254</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Zacate, Matthew O</creatorcontrib><creatorcontrib>Minervini, Licia</creatorcontrib><creatorcontrib>Bradfield, Daniel J</creatorcontrib><creatorcontrib>Grimes, Robin W</creatorcontrib><creatorcontrib>Sickafus, Kurt E</creatorcontrib><title>Defect cluster formation in M sub(2)O sub(3)-doped cubic ZrO sub(2)</title><title>Solid state ionics</title><description>Atomistic simulation calculations based on energy minimization techniques have been used to study the energetics associated with M sub(2)O sub(3) solution in ZrO sub(2). Results predict that the binding energy of an oxygen vacancy to one or two substitutional cations is a strong function of dopant cation radius. Oxygen vacancies occupy sites that are first neighbour with respect to small dopants whereas oxygen vacancies are located in second neighbour sites with respect to large dopants. The crossover occurs at approximately Sc super(3+), which also exhibits the smallest binding energy. This behaviour is a consequence of long-range relaxation of the oxygen sublattice. The model is validated by comparing predicted lattice parameters of M sub(2)O sub(3):ZrO sub(2) solid solutions with experimental data.</description><issn>0167-2738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqNyr0KwjAUQOEMCtafd8gkdiikiSTdq-IiXZxcSpreQiRtam7y_oL0AZy-4ZwVyVgpVcGVqDZki_hmjElRyYzUFxjARGpcwgiBDj6MOlo_UTvRB8XUnXje_BR50fsZempSZw19hWbJe7IetEM4LO7I8XZ91vdiDv6TAGM7WjTgnJ7AJ2y54rI8Ky7-Hr_vwjo6</recordid><startdate>20000201</startdate><enddate>20000201</enddate><creator>Zacate, Matthew O</creator><creator>Minervini, Licia</creator><creator>Bradfield, Daniel J</creator><creator>Grimes, Robin W</creator><creator>Sickafus, Kurt E</creator><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20000201</creationdate><title>Defect cluster formation in M sub(2)O sub(3)-doped cubic ZrO sub(2)</title><author>Zacate, Matthew O ; Minervini, Licia ; Bradfield, Daniel J ; Grimes, Robin W ; Sickafus, Kurt E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_272614723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zacate, Matthew O</creatorcontrib><creatorcontrib>Minervini, Licia</creatorcontrib><creatorcontrib>Bradfield, Daniel J</creatorcontrib><creatorcontrib>Grimes, Robin W</creatorcontrib><creatorcontrib>Sickafus, Kurt E</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solid state ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zacate, Matthew O</au><au>Minervini, Licia</au><au>Bradfield, Daniel J</au><au>Grimes, Robin W</au><au>Sickafus, Kurt E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect cluster formation in M sub(2)O sub(3)-doped cubic ZrO sub(2)</atitle><jtitle>Solid state ionics</jtitle><date>2000-02-01</date><risdate>2000</risdate><volume>128</volume><issue>1-4</issue><spage>243</spage><epage>254</epage><pages>243-254</pages><issn>0167-2738</issn><abstract>Atomistic simulation calculations based on energy minimization techniques have been used to study the energetics associated with M sub(2)O sub(3) solution in ZrO sub(2). Results predict that the binding energy of an oxygen vacancy to one or two substitutional cations is a strong function of dopant cation radius. Oxygen vacancies occupy sites that are first neighbour with respect to small dopants whereas oxygen vacancies are located in second neighbour sites with respect to large dopants. The crossover occurs at approximately Sc super(3+), which also exhibits the smallest binding energy. This behaviour is a consequence of long-range relaxation of the oxygen sublattice. The model is validated by comparing predicted lattice parameters of M sub(2)O sub(3):ZrO sub(2) solid solutions with experimental data.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-2738 |
ispartof | Solid state ionics, 2000-02, Vol.128 (1-4), p.243-254 |
issn | 0167-2738 |
language | eng |
recordid | cdi_proquest_miscellaneous_27261472 |
source | ScienceDirect Freedom Collection |
title | Defect cluster formation in M sub(2)O sub(3)-doped cubic ZrO sub(2) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20cluster%20formation%20in%20M%20sub(2)O%20sub(3)-doped%20cubic%20ZrO%20sub(2)&rft.jtitle=Solid%20state%20ionics&rft.au=Zacate,%20Matthew%20O&rft.date=2000-02-01&rft.volume=128&rft.issue=1-4&rft.spage=243&rft.epage=254&rft.pages=243-254&rft.issn=0167-2738&rft_id=info:doi/&rft_dat=%3Cproquest%3E27261472%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_miscellaneous_272614723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27261472&rft_id=info:pmid/&rfr_iscdi=true |