Loading…

Vector beam bending via a polarization gradient

We propose, analyze and demonstrate experimentally an entirely new optical effect in which the centroid of a coherent optical beam can be designed to propagate along a curved trajectory in free space by tailoring the spatial distribution of linear polarization across the transverse beam profile. Spe...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2022-10, Vol.30 (21), p.38907-38929
Main Authors: Nichols, J. M., Nickel, D. V., Bucholtz, F.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose, analyze and demonstrate experimentally an entirely new optical effect in which the centroid of a coherent optical beam can be designed to propagate along a curved trajectory in free space by tailoring the spatial distribution of linear polarization across the transverse beam profile. Specifically, a non-zero spatial gradient of second order or higher in the linear state of polarization is shown to cause the beam centroid to “accelerate” in the direction transverse to the direction of propagation. The effect is confirmed experimentally using spatial light modulation to create the distribution in linear polarization and then measuring the transverse location of the beam profile at varying propagation distances. The observed displacement of the beam centroid is shown to closely match the theory out to 34m propagation distance.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.467678