Loading…
HORN-9: Special-purpose computer for electroholography with the Hilbert transform
Holography is a technology that uses light interference and diffraction to record and reproduce three-dimensional (3D) information. Using computers, holographic 3D scenes (electroholography) have been widely studied. Nevertheless, its practical application requires enormous computing power, and curr...
Saved in:
Published in: | Optics express 2022-10, Vol.30 (21), p.38115-38127 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Holography is a technology that uses light interference and diffraction to record and reproduce three-dimensional (3D) information. Using computers, holographic 3D scenes (electroholography) have been widely studied. Nevertheless, its practical application requires enormous computing power, and current computers have limitations in real-time processing. In this study, we show that holographic reconstruction (HORN)-9, a special-purpose computer for electroholography with the Hilbert transform, can compute a 1, 920 Ă— 1, 080-pixel computer-generated hologram from a point cloud of 65,000 points in 0.030 s (33 fps) on a single card. This performance is 8, 7, and 170 times more efficient than a previously developed HORN-8, a graphics processing unit, and a central processing unit (CPU), respectively. We also demonstrated the real-time processing and display of 400,000 points on multiple HORN-9s, achieving an acceleration of 600 times with four HORN-9 units compared with a single CPU. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.471720 |