Loading…

Extraordinary Solidification Mechanism of Liquid Alloys Under Acoustic Levitation State

The acoustic levitation of various materials can be realized by highly intensive ultrasound, which provides a free surface and containerless state for materials processing under space simulation conditions. The nonlinear effects such as acoustic radiation pressure, acoustic streaming, and ultrasonic...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2023-12, Vol.35 (50), p.e2206464-n/a
Main Authors: Geng, Delu, Yan, Na, Xie, Wenjun, Lü, Yongjun, Wei, Bingbo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3734-a1a4bbe8e77b09df080d2829d6c86f76a4104d3bb4119cbcbe31629095d15b613
cites cdi_FETCH-LOGICAL-c3734-a1a4bbe8e77b09df080d2829d6c86f76a4104d3bb4119cbcbe31629095d15b613
container_end_page n/a
container_issue 50
container_start_page e2206464
container_title Advanced materials (Weinheim)
container_volume 35
creator Geng, Delu
Yan, Na
Xie, Wenjun
Lü, Yongjun
Wei, Bingbo
description The acoustic levitation of various materials can be realized by highly intensive ultrasound, which provides a free surface and containerless state for materials processing under space simulation conditions. The nonlinear effects such as acoustic radiation pressure, acoustic streaming, and ultrasonic cavitation open up special access to modulate the fluid dynamics and solidification mechanisms of liquid materials. Here, the physical characteristics of liquid flow, undercooling capability, phase separation, and crystal nucleation and growth within acoustically levitated droplets are explored comprehensively to reveal the extraordinary solidification kinetics of liquid alloys. The sectorial shape oscillations of the 2nd to 10th order modes accompanying internal potential flow are observed for water droplets with modulated ultrasound amplitudes, while the enhanced ultrasound intensity promotes ice nucleation and thus reduces water undercooling. The migration of Sn‐rich globules during phase separation of immiscible Al–Cu–Sn alloy is dominated by the droplet deformation and rotation related to acoustic levitation. The high undercooling states of liquid Ag–Cu–Ge and Ni–Sn alloys during acoustic levitation result in the refinement of (Ag) dendrites and the formation of anomalous (Ni+Ni3Sn) eutectics. The ultrasound–liquid interaction also induces surface waves during the containerless solidification of Ag–Cu and Ni–Sn eutectic alloys. Acoustic levitation is an advanced containerless processing technique for simulating a space environment, and provides an effective approach to modulate the fluid dynamics and solidification mechanisms of liquid materials. The physical characteristics of liquid flow, undercooling capability, phase separation, crystal nucleation, and dendritic and eutectic growth within acoustically levitated droplets are demonstrated comprehensively to reveal the extraordinary solidification kinetics of liquid alloys.
doi_str_mv 10.1002/adma.202206464
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2727644280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2727644280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-a1a4bbe8e77b09df080d2829d6c86f76a4104d3bb4119cbcbe31629095d15b613</originalsourceid><addsrcrecordid>eNqFkE1P3DAQQK2qqLtArz1WkXrhkmX8ESc-RpRCpUUcAPVo-SuqURLv2gll_32NdqFSL5zm8uZp5iH0BcMKA5BzZQe1IkAIcMbZB7TEFcElA1F9REsQtCoFZ80CHaf0CACCA_-EFpSTGleYL9Gvy-cpqhCtH1XcFXeh99Z33qjJh7G4cea3Gn0aitAVa7-dvS3avg-7VDyM1sWiNWFOkzfF2j35ab90l6c7RUed6pP7fJgn6OHH5f3Fdbm-vfp50a5LQ2vKSoUV09o1rq41CNtBA5Y0RFhuGt7VXDEMzFKtGcbCaKMdxZyI_J7FleaYnqCzvXcTw3Z2aZKDT8b1vRpdPk2SmtScMdJARr_9hz6GOY75OpmNmAoMhGZqtadMDClF18lN9ENuIzHIl-TyJbl8S54Xvh60sx6cfcNfG2dA7IE_vne7d3Sy_X7T_pP_BYRljME</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901391023</pqid></control><display><type>article</type><title>Extraordinary Solidification Mechanism of Liquid Alloys Under Acoustic Levitation State</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Geng, Delu ; Yan, Na ; Xie, Wenjun ; Lü, Yongjun ; Wei, Bingbo</creator><creatorcontrib>Geng, Delu ; Yan, Na ; Xie, Wenjun ; Lü, Yongjun ; Wei, Bingbo</creatorcontrib><description>The acoustic levitation of various materials can be realized by highly intensive ultrasound, which provides a free surface and containerless state for materials processing under space simulation conditions. The nonlinear effects such as acoustic radiation pressure, acoustic streaming, and ultrasonic cavitation open up special access to modulate the fluid dynamics and solidification mechanisms of liquid materials. Here, the physical characteristics of liquid flow, undercooling capability, phase separation, and crystal nucleation and growth within acoustically levitated droplets are explored comprehensively to reveal the extraordinary solidification kinetics of liquid alloys. The sectorial shape oscillations of the 2nd to 10th order modes accompanying internal potential flow are observed for water droplets with modulated ultrasound amplitudes, while the enhanced ultrasound intensity promotes ice nucleation and thus reduces water undercooling. The migration of Sn‐rich globules during phase separation of immiscible Al–Cu–Sn alloy is dominated by the droplet deformation and rotation related to acoustic levitation. The high undercooling states of liquid Ag–Cu–Ge and Ni–Sn alloys during acoustic levitation result in the refinement of (Ag) dendrites and the formation of anomalous (Ni+Ni3Sn) eutectics. The ultrasound–liquid interaction also induces surface waves during the containerless solidification of Ag–Cu and Ni–Sn eutectic alloys. Acoustic levitation is an advanced containerless processing technique for simulating a space environment, and provides an effective approach to modulate the fluid dynamics and solidification mechanisms of liquid materials. The physical characteristics of liquid flow, undercooling capability, phase separation, crystal nucleation, and dendritic and eutectic growth within acoustically levitated droplets are demonstrated comprehensively to reveal the extraordinary solidification kinetics of liquid alloys.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202206464</identifier><identifier>PMID: 36271516</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acoustic levitation ; Acoustic streaming ; Acoustics ; Cavitation ; Copper ; Copper base alloys ; Crystal growth ; dendritic and eutectic growth ; drop dynamics ; Droplets ; Eutectic alloys ; Fluid dynamics ; Free surfaces ; Germanium ; Globules ; Liquid alloys ; Liquid flow ; liquid undercooling ; Materials processing ; microgravity state ; Nickel ; Nucleation ; Phase separation ; Physical properties ; Potential flow ; Radiation pressure ; Solidification ; Sound waves ; space simulation ; Supercooling ; Surface waves ; Ultrasonic imaging</subject><ispartof>Advanced materials (Weinheim), 2023-12, Vol.35 (50), p.e2206464-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-a1a4bbe8e77b09df080d2829d6c86f76a4104d3bb4119cbcbe31629095d15b613</citedby><cites>FETCH-LOGICAL-c3734-a1a4bbe8e77b09df080d2829d6c86f76a4104d3bb4119cbcbe31629095d15b613</cites><orcidid>0000-0003-2120-6895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36271516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Geng, Delu</creatorcontrib><creatorcontrib>Yan, Na</creatorcontrib><creatorcontrib>Xie, Wenjun</creatorcontrib><creatorcontrib>Lü, Yongjun</creatorcontrib><creatorcontrib>Wei, Bingbo</creatorcontrib><title>Extraordinary Solidification Mechanism of Liquid Alloys Under Acoustic Levitation State</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The acoustic levitation of various materials can be realized by highly intensive ultrasound, which provides a free surface and containerless state for materials processing under space simulation conditions. The nonlinear effects such as acoustic radiation pressure, acoustic streaming, and ultrasonic cavitation open up special access to modulate the fluid dynamics and solidification mechanisms of liquid materials. Here, the physical characteristics of liquid flow, undercooling capability, phase separation, and crystal nucleation and growth within acoustically levitated droplets are explored comprehensively to reveal the extraordinary solidification kinetics of liquid alloys. The sectorial shape oscillations of the 2nd to 10th order modes accompanying internal potential flow are observed for water droplets with modulated ultrasound amplitudes, while the enhanced ultrasound intensity promotes ice nucleation and thus reduces water undercooling. The migration of Sn‐rich globules during phase separation of immiscible Al–Cu–Sn alloy is dominated by the droplet deformation and rotation related to acoustic levitation. The high undercooling states of liquid Ag–Cu–Ge and Ni–Sn alloys during acoustic levitation result in the refinement of (Ag) dendrites and the formation of anomalous (Ni+Ni3Sn) eutectics. The ultrasound–liquid interaction also induces surface waves during the containerless solidification of Ag–Cu and Ni–Sn eutectic alloys. Acoustic levitation is an advanced containerless processing technique for simulating a space environment, and provides an effective approach to modulate the fluid dynamics and solidification mechanisms of liquid materials. The physical characteristics of liquid flow, undercooling capability, phase separation, crystal nucleation, and dendritic and eutectic growth within acoustically levitated droplets are demonstrated comprehensively to reveal the extraordinary solidification kinetics of liquid alloys.</description><subject>Acoustic levitation</subject><subject>Acoustic streaming</subject><subject>Acoustics</subject><subject>Cavitation</subject><subject>Copper</subject><subject>Copper base alloys</subject><subject>Crystal growth</subject><subject>dendritic and eutectic growth</subject><subject>drop dynamics</subject><subject>Droplets</subject><subject>Eutectic alloys</subject><subject>Fluid dynamics</subject><subject>Free surfaces</subject><subject>Germanium</subject><subject>Globules</subject><subject>Liquid alloys</subject><subject>Liquid flow</subject><subject>liquid undercooling</subject><subject>Materials processing</subject><subject>microgravity state</subject><subject>Nickel</subject><subject>Nucleation</subject><subject>Phase separation</subject><subject>Physical properties</subject><subject>Potential flow</subject><subject>Radiation pressure</subject><subject>Solidification</subject><subject>Sound waves</subject><subject>space simulation</subject><subject>Supercooling</subject><subject>Surface waves</subject><subject>Ultrasonic imaging</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P3DAQQK2qqLtArz1WkXrhkmX8ESc-RpRCpUUcAPVo-SuqURLv2gll_32NdqFSL5zm8uZp5iH0BcMKA5BzZQe1IkAIcMbZB7TEFcElA1F9REsQtCoFZ80CHaf0CACCA_-EFpSTGleYL9Gvy-cpqhCtH1XcFXeh99Z33qjJh7G4cea3Gn0aitAVa7-dvS3avg-7VDyM1sWiNWFOkzfF2j35ab90l6c7RUed6pP7fJgn6OHH5f3Fdbm-vfp50a5LQ2vKSoUV09o1rq41CNtBA5Y0RFhuGt7VXDEMzFKtGcbCaKMdxZyI_J7FleaYnqCzvXcTw3Z2aZKDT8b1vRpdPk2SmtScMdJARr_9hz6GOY75OpmNmAoMhGZqtadMDClF18lN9ENuIzHIl-TyJbl8S54Xvh60sx6cfcNfG2dA7IE_vne7d3Sy_X7T_pP_BYRljME</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Geng, Delu</creator><creator>Yan, Na</creator><creator>Xie, Wenjun</creator><creator>Lü, Yongjun</creator><creator>Wei, Bingbo</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2120-6895</orcidid></search><sort><creationdate>20231201</creationdate><title>Extraordinary Solidification Mechanism of Liquid Alloys Under Acoustic Levitation State</title><author>Geng, Delu ; Yan, Na ; Xie, Wenjun ; Lü, Yongjun ; Wei, Bingbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-a1a4bbe8e77b09df080d2829d6c86f76a4104d3bb4119cbcbe31629095d15b613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustic levitation</topic><topic>Acoustic streaming</topic><topic>Acoustics</topic><topic>Cavitation</topic><topic>Copper</topic><topic>Copper base alloys</topic><topic>Crystal growth</topic><topic>dendritic and eutectic growth</topic><topic>drop dynamics</topic><topic>Droplets</topic><topic>Eutectic alloys</topic><topic>Fluid dynamics</topic><topic>Free surfaces</topic><topic>Germanium</topic><topic>Globules</topic><topic>Liquid alloys</topic><topic>Liquid flow</topic><topic>liquid undercooling</topic><topic>Materials processing</topic><topic>microgravity state</topic><topic>Nickel</topic><topic>Nucleation</topic><topic>Phase separation</topic><topic>Physical properties</topic><topic>Potential flow</topic><topic>Radiation pressure</topic><topic>Solidification</topic><topic>Sound waves</topic><topic>space simulation</topic><topic>Supercooling</topic><topic>Surface waves</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geng, Delu</creatorcontrib><creatorcontrib>Yan, Na</creatorcontrib><creatorcontrib>Xie, Wenjun</creatorcontrib><creatorcontrib>Lü, Yongjun</creatorcontrib><creatorcontrib>Wei, Bingbo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geng, Delu</au><au>Yan, Na</au><au>Xie, Wenjun</au><au>Lü, Yongjun</au><au>Wei, Bingbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extraordinary Solidification Mechanism of Liquid Alloys Under Acoustic Levitation State</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>35</volume><issue>50</issue><spage>e2206464</spage><epage>n/a</epage><pages>e2206464-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The acoustic levitation of various materials can be realized by highly intensive ultrasound, which provides a free surface and containerless state for materials processing under space simulation conditions. The nonlinear effects such as acoustic radiation pressure, acoustic streaming, and ultrasonic cavitation open up special access to modulate the fluid dynamics and solidification mechanisms of liquid materials. Here, the physical characteristics of liquid flow, undercooling capability, phase separation, and crystal nucleation and growth within acoustically levitated droplets are explored comprehensively to reveal the extraordinary solidification kinetics of liquid alloys. The sectorial shape oscillations of the 2nd to 10th order modes accompanying internal potential flow are observed for water droplets with modulated ultrasound amplitudes, while the enhanced ultrasound intensity promotes ice nucleation and thus reduces water undercooling. The migration of Sn‐rich globules during phase separation of immiscible Al–Cu–Sn alloy is dominated by the droplet deformation and rotation related to acoustic levitation. The high undercooling states of liquid Ag–Cu–Ge and Ni–Sn alloys during acoustic levitation result in the refinement of (Ag) dendrites and the formation of anomalous (Ni+Ni3Sn) eutectics. The ultrasound–liquid interaction also induces surface waves during the containerless solidification of Ag–Cu and Ni–Sn eutectic alloys. Acoustic levitation is an advanced containerless processing technique for simulating a space environment, and provides an effective approach to modulate the fluid dynamics and solidification mechanisms of liquid materials. The physical characteristics of liquid flow, undercooling capability, phase separation, crystal nucleation, and dendritic and eutectic growth within acoustically levitated droplets are demonstrated comprehensively to reveal the extraordinary solidification kinetics of liquid alloys.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36271516</pmid><doi>10.1002/adma.202206464</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2120-6895</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-12, Vol.35 (50), p.e2206464-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2727644280
source Wiley-Blackwell Read & Publish Collection
subjects Acoustic levitation
Acoustic streaming
Acoustics
Cavitation
Copper
Copper base alloys
Crystal growth
dendritic and eutectic growth
drop dynamics
Droplets
Eutectic alloys
Fluid dynamics
Free surfaces
Germanium
Globules
Liquid alloys
Liquid flow
liquid undercooling
Materials processing
microgravity state
Nickel
Nucleation
Phase separation
Physical properties
Potential flow
Radiation pressure
Solidification
Sound waves
space simulation
Supercooling
Surface waves
Ultrasonic imaging
title Extraordinary Solidification Mechanism of Liquid Alloys Under Acoustic Levitation State
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extraordinary%20Solidification%20Mechanism%20of%20Liquid%20Alloys%20Under%20Acoustic%20Levitation%20State&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Geng,%20Delu&rft.date=2023-12-01&rft.volume=35&rft.issue=50&rft.spage=e2206464&rft.epage=n/a&rft.pages=e2206464-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202206464&rft_dat=%3Cproquest_cross%3E2727644280%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3734-a1a4bbe8e77b09df080d2829d6c86f76a4104d3bb4119cbcbe31629095d15b613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2901391023&rft_id=info:pmid/36271516&rfr_iscdi=true