Loading…
Extraordinary Solidification Mechanism of Liquid Alloys Under Acoustic Levitation State
The acoustic levitation of various materials can be realized by highly intensive ultrasound, which provides a free surface and containerless state for materials processing under space simulation conditions. The nonlinear effects such as acoustic radiation pressure, acoustic streaming, and ultrasonic...
Saved in:
Published in: | Advanced materials (Weinheim) 2023-12, Vol.35 (50), p.e2206464-n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3734-a1a4bbe8e77b09df080d2829d6c86f76a4104d3bb4119cbcbe31629095d15b613 |
---|---|
cites | cdi_FETCH-LOGICAL-c3734-a1a4bbe8e77b09df080d2829d6c86f76a4104d3bb4119cbcbe31629095d15b613 |
container_end_page | n/a |
container_issue | 50 |
container_start_page | e2206464 |
container_title | Advanced materials (Weinheim) |
container_volume | 35 |
creator | Geng, Delu Yan, Na Xie, Wenjun Lü, Yongjun Wei, Bingbo |
description | The acoustic levitation of various materials can be realized by highly intensive ultrasound, which provides a free surface and containerless state for materials processing under space simulation conditions. The nonlinear effects such as acoustic radiation pressure, acoustic streaming, and ultrasonic cavitation open up special access to modulate the fluid dynamics and solidification mechanisms of liquid materials. Here, the physical characteristics of liquid flow, undercooling capability, phase separation, and crystal nucleation and growth within acoustically levitated droplets are explored comprehensively to reveal the extraordinary solidification kinetics of liquid alloys. The sectorial shape oscillations of the 2nd to 10th order modes accompanying internal potential flow are observed for water droplets with modulated ultrasound amplitudes, while the enhanced ultrasound intensity promotes ice nucleation and thus reduces water undercooling. The migration of Sn‐rich globules during phase separation of immiscible Al–Cu–Sn alloy is dominated by the droplet deformation and rotation related to acoustic levitation. The high undercooling states of liquid Ag–Cu–Ge and Ni–Sn alloys during acoustic levitation result in the refinement of (Ag) dendrites and the formation of anomalous (Ni+Ni3Sn) eutectics. The ultrasound–liquid interaction also induces surface waves during the containerless solidification of Ag–Cu and Ni–Sn eutectic alloys.
Acoustic levitation is an advanced containerless processing technique for simulating a space environment, and provides an effective approach to modulate the fluid dynamics and solidification mechanisms of liquid materials. The physical characteristics of liquid flow, undercooling capability, phase separation, crystal nucleation, and dendritic and eutectic growth within acoustically levitated droplets are demonstrated comprehensively to reveal the extraordinary solidification kinetics of liquid alloys. |
doi_str_mv | 10.1002/adma.202206464 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2727644280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2727644280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-a1a4bbe8e77b09df080d2829d6c86f76a4104d3bb4119cbcbe31629095d15b613</originalsourceid><addsrcrecordid>eNqFkE1P3DAQQK2qqLtArz1WkXrhkmX8ESc-RpRCpUUcAPVo-SuqURLv2gll_32NdqFSL5zm8uZp5iH0BcMKA5BzZQe1IkAIcMbZB7TEFcElA1F9REsQtCoFZ80CHaf0CACCA_-EFpSTGleYL9Gvy-cpqhCtH1XcFXeh99Z33qjJh7G4cea3Gn0aitAVa7-dvS3avg-7VDyM1sWiNWFOkzfF2j35ab90l6c7RUed6pP7fJgn6OHH5f3Fdbm-vfp50a5LQ2vKSoUV09o1rq41CNtBA5Y0RFhuGt7VXDEMzFKtGcbCaKMdxZyI_J7FleaYnqCzvXcTw3Z2aZKDT8b1vRpdPk2SmtScMdJARr_9hz6GOY75OpmNmAoMhGZqtadMDClF18lN9ENuIzHIl-TyJbl8S54Xvh60sx6cfcNfG2dA7IE_vne7d3Sy_X7T_pP_BYRljME</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901391023</pqid></control><display><type>article</type><title>Extraordinary Solidification Mechanism of Liquid Alloys Under Acoustic Levitation State</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Geng, Delu ; Yan, Na ; Xie, Wenjun ; Lü, Yongjun ; Wei, Bingbo</creator><creatorcontrib>Geng, Delu ; Yan, Na ; Xie, Wenjun ; Lü, Yongjun ; Wei, Bingbo</creatorcontrib><description>The acoustic levitation of various materials can be realized by highly intensive ultrasound, which provides a free surface and containerless state for materials processing under space simulation conditions. The nonlinear effects such as acoustic radiation pressure, acoustic streaming, and ultrasonic cavitation open up special access to modulate the fluid dynamics and solidification mechanisms of liquid materials. Here, the physical characteristics of liquid flow, undercooling capability, phase separation, and crystal nucleation and growth within acoustically levitated droplets are explored comprehensively to reveal the extraordinary solidification kinetics of liquid alloys. The sectorial shape oscillations of the 2nd to 10th order modes accompanying internal potential flow are observed for water droplets with modulated ultrasound amplitudes, while the enhanced ultrasound intensity promotes ice nucleation and thus reduces water undercooling. The migration of Sn‐rich globules during phase separation of immiscible Al–Cu–Sn alloy is dominated by the droplet deformation and rotation related to acoustic levitation. The high undercooling states of liquid Ag–Cu–Ge and Ni–Sn alloys during acoustic levitation result in the refinement of (Ag) dendrites and the formation of anomalous (Ni+Ni3Sn) eutectics. The ultrasound–liquid interaction also induces surface waves during the containerless solidification of Ag–Cu and Ni–Sn eutectic alloys.
Acoustic levitation is an advanced containerless processing technique for simulating a space environment, and provides an effective approach to modulate the fluid dynamics and solidification mechanisms of liquid materials. The physical characteristics of liquid flow, undercooling capability, phase separation, crystal nucleation, and dendritic and eutectic growth within acoustically levitated droplets are demonstrated comprehensively to reveal the extraordinary solidification kinetics of liquid alloys.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202206464</identifier><identifier>PMID: 36271516</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acoustic levitation ; Acoustic streaming ; Acoustics ; Cavitation ; Copper ; Copper base alloys ; Crystal growth ; dendritic and eutectic growth ; drop dynamics ; Droplets ; Eutectic alloys ; Fluid dynamics ; Free surfaces ; Germanium ; Globules ; Liquid alloys ; Liquid flow ; liquid undercooling ; Materials processing ; microgravity state ; Nickel ; Nucleation ; Phase separation ; Physical properties ; Potential flow ; Radiation pressure ; Solidification ; Sound waves ; space simulation ; Supercooling ; Surface waves ; Ultrasonic imaging</subject><ispartof>Advanced materials (Weinheim), 2023-12, Vol.35 (50), p.e2206464-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-a1a4bbe8e77b09df080d2829d6c86f76a4104d3bb4119cbcbe31629095d15b613</citedby><cites>FETCH-LOGICAL-c3734-a1a4bbe8e77b09df080d2829d6c86f76a4104d3bb4119cbcbe31629095d15b613</cites><orcidid>0000-0003-2120-6895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36271516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Geng, Delu</creatorcontrib><creatorcontrib>Yan, Na</creatorcontrib><creatorcontrib>Xie, Wenjun</creatorcontrib><creatorcontrib>Lü, Yongjun</creatorcontrib><creatorcontrib>Wei, Bingbo</creatorcontrib><title>Extraordinary Solidification Mechanism of Liquid Alloys Under Acoustic Levitation State</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The acoustic levitation of various materials can be realized by highly intensive ultrasound, which provides a free surface and containerless state for materials processing under space simulation conditions. The nonlinear effects such as acoustic radiation pressure, acoustic streaming, and ultrasonic cavitation open up special access to modulate the fluid dynamics and solidification mechanisms of liquid materials. Here, the physical characteristics of liquid flow, undercooling capability, phase separation, and crystal nucleation and growth within acoustically levitated droplets are explored comprehensively to reveal the extraordinary solidification kinetics of liquid alloys. The sectorial shape oscillations of the 2nd to 10th order modes accompanying internal potential flow are observed for water droplets with modulated ultrasound amplitudes, while the enhanced ultrasound intensity promotes ice nucleation and thus reduces water undercooling. The migration of Sn‐rich globules during phase separation of immiscible Al–Cu–Sn alloy is dominated by the droplet deformation and rotation related to acoustic levitation. The high undercooling states of liquid Ag–Cu–Ge and Ni–Sn alloys during acoustic levitation result in the refinement of (Ag) dendrites and the formation of anomalous (Ni+Ni3Sn) eutectics. The ultrasound–liquid interaction also induces surface waves during the containerless solidification of Ag–Cu and Ni–Sn eutectic alloys.
Acoustic levitation is an advanced containerless processing technique for simulating a space environment, and provides an effective approach to modulate the fluid dynamics and solidification mechanisms of liquid materials. The physical characteristics of liquid flow, undercooling capability, phase separation, crystal nucleation, and dendritic and eutectic growth within acoustically levitated droplets are demonstrated comprehensively to reveal the extraordinary solidification kinetics of liquid alloys.</description><subject>Acoustic levitation</subject><subject>Acoustic streaming</subject><subject>Acoustics</subject><subject>Cavitation</subject><subject>Copper</subject><subject>Copper base alloys</subject><subject>Crystal growth</subject><subject>dendritic and eutectic growth</subject><subject>drop dynamics</subject><subject>Droplets</subject><subject>Eutectic alloys</subject><subject>Fluid dynamics</subject><subject>Free surfaces</subject><subject>Germanium</subject><subject>Globules</subject><subject>Liquid alloys</subject><subject>Liquid flow</subject><subject>liquid undercooling</subject><subject>Materials processing</subject><subject>microgravity state</subject><subject>Nickel</subject><subject>Nucleation</subject><subject>Phase separation</subject><subject>Physical properties</subject><subject>Potential flow</subject><subject>Radiation pressure</subject><subject>Solidification</subject><subject>Sound waves</subject><subject>space simulation</subject><subject>Supercooling</subject><subject>Surface waves</subject><subject>Ultrasonic imaging</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P3DAQQK2qqLtArz1WkXrhkmX8ESc-RpRCpUUcAPVo-SuqURLv2gll_32NdqFSL5zm8uZp5iH0BcMKA5BzZQe1IkAIcMbZB7TEFcElA1F9REsQtCoFZ80CHaf0CACCA_-EFpSTGleYL9Gvy-cpqhCtH1XcFXeh99Z33qjJh7G4cea3Gn0aitAVa7-dvS3avg-7VDyM1sWiNWFOkzfF2j35ab90l6c7RUed6pP7fJgn6OHH5f3Fdbm-vfp50a5LQ2vKSoUV09o1rq41CNtBA5Y0RFhuGt7VXDEMzFKtGcbCaKMdxZyI_J7FleaYnqCzvXcTw3Z2aZKDT8b1vRpdPk2SmtScMdJARr_9hz6GOY75OpmNmAoMhGZqtadMDClF18lN9ENuIzHIl-TyJbl8S54Xvh60sx6cfcNfG2dA7IE_vne7d3Sy_X7T_pP_BYRljME</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Geng, Delu</creator><creator>Yan, Na</creator><creator>Xie, Wenjun</creator><creator>Lü, Yongjun</creator><creator>Wei, Bingbo</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2120-6895</orcidid></search><sort><creationdate>20231201</creationdate><title>Extraordinary Solidification Mechanism of Liquid Alloys Under Acoustic Levitation State</title><author>Geng, Delu ; Yan, Na ; Xie, Wenjun ; Lü, Yongjun ; Wei, Bingbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-a1a4bbe8e77b09df080d2829d6c86f76a4104d3bb4119cbcbe31629095d15b613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustic levitation</topic><topic>Acoustic streaming</topic><topic>Acoustics</topic><topic>Cavitation</topic><topic>Copper</topic><topic>Copper base alloys</topic><topic>Crystal growth</topic><topic>dendritic and eutectic growth</topic><topic>drop dynamics</topic><topic>Droplets</topic><topic>Eutectic alloys</topic><topic>Fluid dynamics</topic><topic>Free surfaces</topic><topic>Germanium</topic><topic>Globules</topic><topic>Liquid alloys</topic><topic>Liquid flow</topic><topic>liquid undercooling</topic><topic>Materials processing</topic><topic>microgravity state</topic><topic>Nickel</topic><topic>Nucleation</topic><topic>Phase separation</topic><topic>Physical properties</topic><topic>Potential flow</topic><topic>Radiation pressure</topic><topic>Solidification</topic><topic>Sound waves</topic><topic>space simulation</topic><topic>Supercooling</topic><topic>Surface waves</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geng, Delu</creatorcontrib><creatorcontrib>Yan, Na</creatorcontrib><creatorcontrib>Xie, Wenjun</creatorcontrib><creatorcontrib>Lü, Yongjun</creatorcontrib><creatorcontrib>Wei, Bingbo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geng, Delu</au><au>Yan, Na</au><au>Xie, Wenjun</au><au>Lü, Yongjun</au><au>Wei, Bingbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extraordinary Solidification Mechanism of Liquid Alloys Under Acoustic Levitation State</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>35</volume><issue>50</issue><spage>e2206464</spage><epage>n/a</epage><pages>e2206464-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The acoustic levitation of various materials can be realized by highly intensive ultrasound, which provides a free surface and containerless state for materials processing under space simulation conditions. The nonlinear effects such as acoustic radiation pressure, acoustic streaming, and ultrasonic cavitation open up special access to modulate the fluid dynamics and solidification mechanisms of liquid materials. Here, the physical characteristics of liquid flow, undercooling capability, phase separation, and crystal nucleation and growth within acoustically levitated droplets are explored comprehensively to reveal the extraordinary solidification kinetics of liquid alloys. The sectorial shape oscillations of the 2nd to 10th order modes accompanying internal potential flow are observed for water droplets with modulated ultrasound amplitudes, while the enhanced ultrasound intensity promotes ice nucleation and thus reduces water undercooling. The migration of Sn‐rich globules during phase separation of immiscible Al–Cu–Sn alloy is dominated by the droplet deformation and rotation related to acoustic levitation. The high undercooling states of liquid Ag–Cu–Ge and Ni–Sn alloys during acoustic levitation result in the refinement of (Ag) dendrites and the formation of anomalous (Ni+Ni3Sn) eutectics. The ultrasound–liquid interaction also induces surface waves during the containerless solidification of Ag–Cu and Ni–Sn eutectic alloys.
Acoustic levitation is an advanced containerless processing technique for simulating a space environment, and provides an effective approach to modulate the fluid dynamics and solidification mechanisms of liquid materials. The physical characteristics of liquid flow, undercooling capability, phase separation, crystal nucleation, and dendritic and eutectic growth within acoustically levitated droplets are demonstrated comprehensively to reveal the extraordinary solidification kinetics of liquid alloys.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36271516</pmid><doi>10.1002/adma.202206464</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2120-6895</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2023-12, Vol.35 (50), p.e2206464-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2727644280 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Acoustic levitation Acoustic streaming Acoustics Cavitation Copper Copper base alloys Crystal growth dendritic and eutectic growth drop dynamics Droplets Eutectic alloys Fluid dynamics Free surfaces Germanium Globules Liquid alloys Liquid flow liquid undercooling Materials processing microgravity state Nickel Nucleation Phase separation Physical properties Potential flow Radiation pressure Solidification Sound waves space simulation Supercooling Surface waves Ultrasonic imaging |
title | Extraordinary Solidification Mechanism of Liquid Alloys Under Acoustic Levitation State |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extraordinary%20Solidification%20Mechanism%20of%20Liquid%20Alloys%20Under%20Acoustic%20Levitation%20State&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Geng,%20Delu&rft.date=2023-12-01&rft.volume=35&rft.issue=50&rft.spage=e2206464&rft.epage=n/a&rft.pages=e2206464-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202206464&rft_dat=%3Cproquest_cross%3E2727644280%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3734-a1a4bbe8e77b09df080d2829d6c86f76a4104d3bb4119cbcbe31629095d15b613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2901391023&rft_id=info:pmid/36271516&rfr_iscdi=true |