Loading…
Li-SegPNet: Encoder-Decoder Mode Lightweight Segmentation Network for Colorectal Polyps Analysis
Objective: One of the fundamental and crucial tasks for the automated diagnosis of colorectal cancer is the segmentation of the acute gastrointestinal lesions, most commonly colorectal polyps. Therefore, in this work, we present a novel lightweight encoder-decoder mode of architecture with the atten...
Saved in:
Published in: | IEEE transactions on biomedical engineering 2023-04, Vol.70 (4), p.1330-1339 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-1cef2eac50819bcedc3ba109f565685bb586bde6d648776ac208fb99764e8e5c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-1cef2eac50819bcedc3ba109f565685bb586bde6d648776ac208fb99764e8e5c3 |
container_end_page | 1339 |
container_issue | 4 |
container_start_page | 1330 |
container_title | IEEE transactions on biomedical engineering |
container_volume | 70 |
creator | Sharma, Pallabi Gautam, Anmol Maji, Pallab Pachori, Ram Bilas Balabantaray, Bunil Kumar |
description | Objective: One of the fundamental and crucial tasks for the automated diagnosis of colorectal cancer is the segmentation of the acute gastrointestinal lesions, most commonly colorectal polyps. Therefore, in this work, we present a novel lightweight encoder-decoder mode of architecture with the attention mechanism to address this challenging task. Methods: The proposed Li-SegPNet architecture harnesses cross-dimensional interaction in feature maps with novel encoder block with modified triplet attention. We have used atrous spatial pyramid pooling to handle the problem of segmenting objects at multiple scales. We also address the semantic gap between the encoder and decoder through a modified skip connection using attention gating. Results: We applied our model to colonoscopy still images and trained and validated it on two publicly available datasets, Kvasir-SEG and CVC-ClinicDB. We achieve mean Intersection-Over-Union (mIoU) and dice scores of 0.88, 0.9058 and 0.8969, 0.9372 on Kvasir-SEG and CVC-ClinicDB, respectively. We analyze the generalizability of Li-SegPNet by testing it on two independent previously unseen datasets, Hyper-Kvasir and EndoTect 2020, and establish the model efficiency in cross-dataset evaluation. We employ multi-scale testing to examine the model performance on different sizes of polyps. Li-SegPNet performs best on medium-sized polyps with a mIoU and dice score of 0.9086 and 0.9137, respectively on the Kvasir-SEG dataset and 0.9425, 0.9434 of mIoU and dice score, respectively on CVC-ClinicDB. Conclusion: The experimental results convey that we establish a new benchmark on these four datasets for the segmentation of polyps. Significance: The proposed model can be used as a new benchmark model for polyps segmentation. Lesser parameters in comparison to other models give the edge in the applicability of the proposed Li-SegPNet model in real-time clinical analysis. |
doi_str_mv | 10.1109/TBME.2022.3216269 |
format | article |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_2727645352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9926143</ieee_id><sourcerecordid>2789362338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-1cef2eac50819bcedc3ba109f565685bb586bde6d648776ac208fb99764e8e5c3</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EgvL4AISELLFhk-JH7NrsoJSH1EIlYB0cZwKBNC52KtS_x6GFBZsZjebckX0QOqSkTynRZ0-Xk1GfEcb6nFHJpN5APSqESpjgdBP1CKEq0UynO2g3hPc4piqV22iHd7AmrIdexlXyCK_Te2jP8aixrgCfXMFPx5NY8bh6fWu_oKs4kjNoWtNWrsEx8uX8By6dx0NXOw-2NTWeuno5D_iiMfUyVGEfbZWmDnCw7nvo-Xr0NLxNxg83d8OLcWJ5qtuEWigZGCuIojq3UFiem_jHUkghlchzoWRegCxkqgYDaSwjqsy1HsgUFAjL99Dp6u7cu88FhDabVcFCXZsG3CJkbMAiK7hgET35h767hY_v7SiloxzOVaToirLeheChzOa-mhm_zCjJOv1Zpz_r9Gdr_TFzvL68yGdQ_CV-fUfgaAVUAPC31ppJmnL-DYYZiPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789362338</pqid></control><display><type>article</type><title>Li-SegPNet: Encoder-Decoder Mode Lightweight Segmentation Network for Colorectal Polyps Analysis</title><source>IEEE Xplore All Conference Series</source><creator>Sharma, Pallabi ; Gautam, Anmol ; Maji, Pallab ; Pachori, Ram Bilas ; Balabantaray, Bunil Kumar</creator><creatorcontrib>Sharma, Pallabi ; Gautam, Anmol ; Maji, Pallab ; Pachori, Ram Bilas ; Balabantaray, Bunil Kumar</creatorcontrib><description>Objective: One of the fundamental and crucial tasks for the automated diagnosis of colorectal cancer is the segmentation of the acute gastrointestinal lesions, most commonly colorectal polyps. Therefore, in this work, we present a novel lightweight encoder-decoder mode of architecture with the attention mechanism to address this challenging task. Methods: The proposed Li-SegPNet architecture harnesses cross-dimensional interaction in feature maps with novel encoder block with modified triplet attention. We have used atrous spatial pyramid pooling to handle the problem of segmenting objects at multiple scales. We also address the semantic gap between the encoder and decoder through a modified skip connection using attention gating. Results: We applied our model to colonoscopy still images and trained and validated it on two publicly available datasets, Kvasir-SEG and CVC-ClinicDB. We achieve mean Intersection-Over-Union (mIoU) and dice scores of 0.88, 0.9058 and 0.8969, 0.9372 on Kvasir-SEG and CVC-ClinicDB, respectively. We analyze the generalizability of Li-SegPNet by testing it on two independent previously unseen datasets, Hyper-Kvasir and EndoTect 2020, and establish the model efficiency in cross-dataset evaluation. We employ multi-scale testing to examine the model performance on different sizes of polyps. Li-SegPNet performs best on medium-sized polyps with a mIoU and dice score of 0.9086 and 0.9137, respectively on the Kvasir-SEG dataset and 0.9425, 0.9434 of mIoU and dice score, respectively on CVC-ClinicDB. Conclusion: The experimental results convey that we establish a new benchmark on these four datasets for the segmentation of polyps. Significance: The proposed model can be used as a new benchmark model for polyps segmentation. Lesser parameters in comparison to other models give the edge in the applicability of the proposed Li-SegPNet model in real-time clinical analysis.</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2022.3216269</identifier><identifier>PMID: 36269902</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Analytical models ; attention ; Benchmarks ; Biomedical imaging ; Cancer ; Coders ; colon cancer ; Colonic Polyps - diagnostic imaging ; Colorectal carcinoma ; Datasets ; Decoding ; Deep learning ; Encoders-Decoders ; Feature maps ; Harnesses ; Humans ; Image Processing, Computer-Assisted ; Image segmentation ; Lightweight ; Lithium ; Logic gates ; Polyps ; polyps segmentation ; Task analysis</subject><ispartof>IEEE transactions on biomedical engineering, 2023-04, Vol.70 (4), p.1330-1339</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-1cef2eac50819bcedc3ba109f565685bb586bde6d648776ac208fb99764e8e5c3</citedby><cites>FETCH-LOGICAL-c349t-1cef2eac50819bcedc3ba109f565685bb586bde6d648776ac208fb99764e8e5c3</cites><orcidid>0000-0003-3447-9251 ; 0000-0002-6061-4309</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9926143$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54555,54796,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9926143$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36269902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Pallabi</creatorcontrib><creatorcontrib>Gautam, Anmol</creatorcontrib><creatorcontrib>Maji, Pallab</creatorcontrib><creatorcontrib>Pachori, Ram Bilas</creatorcontrib><creatorcontrib>Balabantaray, Bunil Kumar</creatorcontrib><title>Li-SegPNet: Encoder-Decoder Mode Lightweight Segmentation Network for Colorectal Polyps Analysis</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>Objective: One of the fundamental and crucial tasks for the automated diagnosis of colorectal cancer is the segmentation of the acute gastrointestinal lesions, most commonly colorectal polyps. Therefore, in this work, we present a novel lightweight encoder-decoder mode of architecture with the attention mechanism to address this challenging task. Methods: The proposed Li-SegPNet architecture harnesses cross-dimensional interaction in feature maps with novel encoder block with modified triplet attention. We have used atrous spatial pyramid pooling to handle the problem of segmenting objects at multiple scales. We also address the semantic gap between the encoder and decoder through a modified skip connection using attention gating. Results: We applied our model to colonoscopy still images and trained and validated it on two publicly available datasets, Kvasir-SEG and CVC-ClinicDB. We achieve mean Intersection-Over-Union (mIoU) and dice scores of 0.88, 0.9058 and 0.8969, 0.9372 on Kvasir-SEG and CVC-ClinicDB, respectively. We analyze the generalizability of Li-SegPNet by testing it on two independent previously unseen datasets, Hyper-Kvasir and EndoTect 2020, and establish the model efficiency in cross-dataset evaluation. We employ multi-scale testing to examine the model performance on different sizes of polyps. Li-SegPNet performs best on medium-sized polyps with a mIoU and dice score of 0.9086 and 0.9137, respectively on the Kvasir-SEG dataset and 0.9425, 0.9434 of mIoU and dice score, respectively on CVC-ClinicDB. Conclusion: The experimental results convey that we establish a new benchmark on these four datasets for the segmentation of polyps. Significance: The proposed model can be used as a new benchmark model for polyps segmentation. Lesser parameters in comparison to other models give the edge in the applicability of the proposed Li-SegPNet model in real-time clinical analysis.</description><subject>Analytical models</subject><subject>attention</subject><subject>Benchmarks</subject><subject>Biomedical imaging</subject><subject>Cancer</subject><subject>Coders</subject><subject>colon cancer</subject><subject>Colonic Polyps - diagnostic imaging</subject><subject>Colorectal carcinoma</subject><subject>Datasets</subject><subject>Decoding</subject><subject>Deep learning</subject><subject>Encoders-Decoders</subject><subject>Feature maps</subject><subject>Harnesses</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image segmentation</subject><subject>Lightweight</subject><subject>Lithium</subject><subject>Logic gates</subject><subject>Polyps</subject><subject>polyps segmentation</subject><subject>Task analysis</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkMtOwzAQRS0EgvL4AISELLFhk-JH7NrsoJSH1EIlYB0cZwKBNC52KtS_x6GFBZsZjebckX0QOqSkTynRZ0-Xk1GfEcb6nFHJpN5APSqESpjgdBP1CKEq0UynO2g3hPc4piqV22iHd7AmrIdexlXyCK_Te2jP8aixrgCfXMFPx5NY8bh6fWu_oKs4kjNoWtNWrsEx8uX8By6dx0NXOw-2NTWeuno5D_iiMfUyVGEfbZWmDnCw7nvo-Xr0NLxNxg83d8OLcWJ5qtuEWigZGCuIojq3UFiem_jHUkghlchzoWRegCxkqgYDaSwjqsy1HsgUFAjL99Dp6u7cu88FhDabVcFCXZsG3CJkbMAiK7hgET35h767hY_v7SiloxzOVaToirLeheChzOa-mhm_zCjJOv1Zpz_r9Gdr_TFzvL68yGdQ_CV-fUfgaAVUAPC31ppJmnL-DYYZiPg</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Sharma, Pallabi</creator><creator>Gautam, Anmol</creator><creator>Maji, Pallab</creator><creator>Pachori, Ram Bilas</creator><creator>Balabantaray, Bunil Kumar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3447-9251</orcidid><orcidid>https://orcid.org/0000-0002-6061-4309</orcidid></search><sort><creationdate>20230401</creationdate><title>Li-SegPNet: Encoder-Decoder Mode Lightweight Segmentation Network for Colorectal Polyps Analysis</title><author>Sharma, Pallabi ; Gautam, Anmol ; Maji, Pallab ; Pachori, Ram Bilas ; Balabantaray, Bunil Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-1cef2eac50819bcedc3ba109f565685bb586bde6d648776ac208fb99764e8e5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical models</topic><topic>attention</topic><topic>Benchmarks</topic><topic>Biomedical imaging</topic><topic>Cancer</topic><topic>Coders</topic><topic>colon cancer</topic><topic>Colonic Polyps - diagnostic imaging</topic><topic>Colorectal carcinoma</topic><topic>Datasets</topic><topic>Decoding</topic><topic>Deep learning</topic><topic>Encoders-Decoders</topic><topic>Feature maps</topic><topic>Harnesses</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image segmentation</topic><topic>Lightweight</topic><topic>Lithium</topic><topic>Logic gates</topic><topic>Polyps</topic><topic>polyps segmentation</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Pallabi</creatorcontrib><creatorcontrib>Gautam, Anmol</creatorcontrib><creatorcontrib>Maji, Pallab</creatorcontrib><creatorcontrib>Pachori, Ram Bilas</creatorcontrib><creatorcontrib>Balabantaray, Bunil Kumar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sharma, Pallabi</au><au>Gautam, Anmol</au><au>Maji, Pallab</au><au>Pachori, Ram Bilas</au><au>Balabantaray, Bunil Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Li-SegPNet: Encoder-Decoder Mode Lightweight Segmentation Network for Colorectal Polyps Analysis</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>70</volume><issue>4</issue><spage>1330</spage><epage>1339</epage><pages>1330-1339</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>Objective: One of the fundamental and crucial tasks for the automated diagnosis of colorectal cancer is the segmentation of the acute gastrointestinal lesions, most commonly colorectal polyps. Therefore, in this work, we present a novel lightweight encoder-decoder mode of architecture with the attention mechanism to address this challenging task. Methods: The proposed Li-SegPNet architecture harnesses cross-dimensional interaction in feature maps with novel encoder block with modified triplet attention. We have used atrous spatial pyramid pooling to handle the problem of segmenting objects at multiple scales. We also address the semantic gap between the encoder and decoder through a modified skip connection using attention gating. Results: We applied our model to colonoscopy still images and trained and validated it on two publicly available datasets, Kvasir-SEG and CVC-ClinicDB. We achieve mean Intersection-Over-Union (mIoU) and dice scores of 0.88, 0.9058 and 0.8969, 0.9372 on Kvasir-SEG and CVC-ClinicDB, respectively. We analyze the generalizability of Li-SegPNet by testing it on two independent previously unseen datasets, Hyper-Kvasir and EndoTect 2020, and establish the model efficiency in cross-dataset evaluation. We employ multi-scale testing to examine the model performance on different sizes of polyps. Li-SegPNet performs best on medium-sized polyps with a mIoU and dice score of 0.9086 and 0.9137, respectively on the Kvasir-SEG dataset and 0.9425, 0.9434 of mIoU and dice score, respectively on CVC-ClinicDB. Conclusion: The experimental results convey that we establish a new benchmark on these four datasets for the segmentation of polyps. Significance: The proposed model can be used as a new benchmark model for polyps segmentation. Lesser parameters in comparison to other models give the edge in the applicability of the proposed Li-SegPNet model in real-time clinical analysis.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>36269902</pmid><doi>10.1109/TBME.2022.3216269</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3447-9251</orcidid><orcidid>https://orcid.org/0000-0002-6061-4309</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9294 |
ispartof | IEEE transactions on biomedical engineering, 2023-04, Vol.70 (4), p.1330-1339 |
issn | 0018-9294 1558-2531 |
language | eng |
recordid | cdi_proquest_miscellaneous_2727645352 |
source | IEEE Xplore All Conference Series |
subjects | Analytical models attention Benchmarks Biomedical imaging Cancer Coders colon cancer Colonic Polyps - diagnostic imaging Colorectal carcinoma Datasets Decoding Deep learning Encoders-Decoders Feature maps Harnesses Humans Image Processing, Computer-Assisted Image segmentation Lightweight Lithium Logic gates Polyps polyps segmentation Task analysis |
title | Li-SegPNet: Encoder-Decoder Mode Lightweight Segmentation Network for Colorectal Polyps Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A38%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Li-SegPNet:%20Encoder-Decoder%20Mode%20Lightweight%20Segmentation%20Network%20for%20Colorectal%20Polyps%20Analysis&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Sharma,%20Pallabi&rft.date=2023-04-01&rft.volume=70&rft.issue=4&rft.spage=1330&rft.epage=1339&rft.pages=1330-1339&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.2022.3216269&rft_dat=%3Cproquest_CHZPO%3E2789362338%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-1cef2eac50819bcedc3ba109f565685bb586bde6d648776ac208fb99764e8e5c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2789362338&rft_id=info:pmid/36269902&rft_ieee_id=9926143&rfr_iscdi=true |