Loading…

Li-SegPNet: Encoder-Decoder Mode Lightweight Segmentation Network for Colorectal Polyps Analysis

Objective: One of the fundamental and crucial tasks for the automated diagnosis of colorectal cancer is the segmentation of the acute gastrointestinal lesions, most commonly colorectal polyps. Therefore, in this work, we present a novel lightweight encoder-decoder mode of architecture with the atten...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2023-04, Vol.70 (4), p.1330-1339
Main Authors: Sharma, Pallabi, Gautam, Anmol, Maji, Pallab, Pachori, Ram Bilas, Balabantaray, Bunil Kumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-1cef2eac50819bcedc3ba109f565685bb586bde6d648776ac208fb99764e8e5c3
cites cdi_FETCH-LOGICAL-c349t-1cef2eac50819bcedc3ba109f565685bb586bde6d648776ac208fb99764e8e5c3
container_end_page 1339
container_issue 4
container_start_page 1330
container_title IEEE transactions on biomedical engineering
container_volume 70
creator Sharma, Pallabi
Gautam, Anmol
Maji, Pallab
Pachori, Ram Bilas
Balabantaray, Bunil Kumar
description Objective: One of the fundamental and crucial tasks for the automated diagnosis of colorectal cancer is the segmentation of the acute gastrointestinal lesions, most commonly colorectal polyps. Therefore, in this work, we present a novel lightweight encoder-decoder mode of architecture with the attention mechanism to address this challenging task. Methods: The proposed Li-SegPNet architecture harnesses cross-dimensional interaction in feature maps with novel encoder block with modified triplet attention. We have used atrous spatial pyramid pooling to handle the problem of segmenting objects at multiple scales. We also address the semantic gap between the encoder and decoder through a modified skip connection using attention gating. Results: We applied our model to colonoscopy still images and trained and validated it on two publicly available datasets, Kvasir-SEG and CVC-ClinicDB. We achieve mean Intersection-Over-Union (mIoU) and dice scores of 0.88, 0.9058 and 0.8969, 0.9372 on Kvasir-SEG and CVC-ClinicDB, respectively. We analyze the generalizability of Li-SegPNet by testing it on two independent previously unseen datasets, Hyper-Kvasir and EndoTect 2020, and establish the model efficiency in cross-dataset evaluation. We employ multi-scale testing to examine the model performance on different sizes of polyps. Li-SegPNet performs best on medium-sized polyps with a mIoU and dice score of 0.9086 and 0.9137, respectively on the Kvasir-SEG dataset and 0.9425, 0.9434 of mIoU and dice score, respectively on CVC-ClinicDB. Conclusion: The experimental results convey that we establish a new benchmark on these four datasets for the segmentation of polyps. Significance: The proposed model can be used as a new benchmark model for polyps segmentation. Lesser parameters in comparison to other models give the edge in the applicability of the proposed Li-SegPNet model in real-time clinical analysis.
doi_str_mv 10.1109/TBME.2022.3216269
format article
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_2727645352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9926143</ieee_id><sourcerecordid>2789362338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-1cef2eac50819bcedc3ba109f565685bb586bde6d648776ac208fb99764e8e5c3</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EgvL4AISELLFhk-JH7NrsoJSH1EIlYB0cZwKBNC52KtS_x6GFBZsZjebckX0QOqSkTynRZ0-Xk1GfEcb6nFHJpN5APSqESpjgdBP1CKEq0UynO2g3hPc4piqV22iHd7AmrIdexlXyCK_Te2jP8aixrgCfXMFPx5NY8bh6fWu_oKs4kjNoWtNWrsEx8uX8By6dx0NXOw-2NTWeuno5D_iiMfUyVGEfbZWmDnCw7nvo-Xr0NLxNxg83d8OLcWJ5qtuEWigZGCuIojq3UFiem_jHUkghlchzoWRegCxkqgYDaSwjqsy1HsgUFAjL99Dp6u7cu88FhDabVcFCXZsG3CJkbMAiK7hgET35h767hY_v7SiloxzOVaToirLeheChzOa-mhm_zCjJOv1Zpz_r9Gdr_TFzvL68yGdQ_CV-fUfgaAVUAPC31ppJmnL-DYYZiPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789362338</pqid></control><display><type>article</type><title>Li-SegPNet: Encoder-Decoder Mode Lightweight Segmentation Network for Colorectal Polyps Analysis</title><source>IEEE Xplore All Conference Series</source><creator>Sharma, Pallabi ; Gautam, Anmol ; Maji, Pallab ; Pachori, Ram Bilas ; Balabantaray, Bunil Kumar</creator><creatorcontrib>Sharma, Pallabi ; Gautam, Anmol ; Maji, Pallab ; Pachori, Ram Bilas ; Balabantaray, Bunil Kumar</creatorcontrib><description>Objective: One of the fundamental and crucial tasks for the automated diagnosis of colorectal cancer is the segmentation of the acute gastrointestinal lesions, most commonly colorectal polyps. Therefore, in this work, we present a novel lightweight encoder-decoder mode of architecture with the attention mechanism to address this challenging task. Methods: The proposed Li-SegPNet architecture harnesses cross-dimensional interaction in feature maps with novel encoder block with modified triplet attention. We have used atrous spatial pyramid pooling to handle the problem of segmenting objects at multiple scales. We also address the semantic gap between the encoder and decoder through a modified skip connection using attention gating. Results: We applied our model to colonoscopy still images and trained and validated it on two publicly available datasets, Kvasir-SEG and CVC-ClinicDB. We achieve mean Intersection-Over-Union (mIoU) and dice scores of 0.88, 0.9058 and 0.8969, 0.9372 on Kvasir-SEG and CVC-ClinicDB, respectively. We analyze the generalizability of Li-SegPNet by testing it on two independent previously unseen datasets, Hyper-Kvasir and EndoTect 2020, and establish the model efficiency in cross-dataset evaluation. We employ multi-scale testing to examine the model performance on different sizes of polyps. Li-SegPNet performs best on medium-sized polyps with a mIoU and dice score of 0.9086 and 0.9137, respectively on the Kvasir-SEG dataset and 0.9425, 0.9434 of mIoU and dice score, respectively on CVC-ClinicDB. Conclusion: The experimental results convey that we establish a new benchmark on these four datasets for the segmentation of polyps. Significance: The proposed model can be used as a new benchmark model for polyps segmentation. Lesser parameters in comparison to other models give the edge in the applicability of the proposed Li-SegPNet model in real-time clinical analysis.</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2022.3216269</identifier><identifier>PMID: 36269902</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Analytical models ; attention ; Benchmarks ; Biomedical imaging ; Cancer ; Coders ; colon cancer ; Colonic Polyps - diagnostic imaging ; Colorectal carcinoma ; Datasets ; Decoding ; Deep learning ; Encoders-Decoders ; Feature maps ; Harnesses ; Humans ; Image Processing, Computer-Assisted ; Image segmentation ; Lightweight ; Lithium ; Logic gates ; Polyps ; polyps segmentation ; Task analysis</subject><ispartof>IEEE transactions on biomedical engineering, 2023-04, Vol.70 (4), p.1330-1339</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-1cef2eac50819bcedc3ba109f565685bb586bde6d648776ac208fb99764e8e5c3</citedby><cites>FETCH-LOGICAL-c349t-1cef2eac50819bcedc3ba109f565685bb586bde6d648776ac208fb99764e8e5c3</cites><orcidid>0000-0003-3447-9251 ; 0000-0002-6061-4309</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9926143$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54555,54796,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9926143$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36269902$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Pallabi</creatorcontrib><creatorcontrib>Gautam, Anmol</creatorcontrib><creatorcontrib>Maji, Pallab</creatorcontrib><creatorcontrib>Pachori, Ram Bilas</creatorcontrib><creatorcontrib>Balabantaray, Bunil Kumar</creatorcontrib><title>Li-SegPNet: Encoder-Decoder Mode Lightweight Segmentation Network for Colorectal Polyps Analysis</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>Objective: One of the fundamental and crucial tasks for the automated diagnosis of colorectal cancer is the segmentation of the acute gastrointestinal lesions, most commonly colorectal polyps. Therefore, in this work, we present a novel lightweight encoder-decoder mode of architecture with the attention mechanism to address this challenging task. Methods: The proposed Li-SegPNet architecture harnesses cross-dimensional interaction in feature maps with novel encoder block with modified triplet attention. We have used atrous spatial pyramid pooling to handle the problem of segmenting objects at multiple scales. We also address the semantic gap between the encoder and decoder through a modified skip connection using attention gating. Results: We applied our model to colonoscopy still images and trained and validated it on two publicly available datasets, Kvasir-SEG and CVC-ClinicDB. We achieve mean Intersection-Over-Union (mIoU) and dice scores of 0.88, 0.9058 and 0.8969, 0.9372 on Kvasir-SEG and CVC-ClinicDB, respectively. We analyze the generalizability of Li-SegPNet by testing it on two independent previously unseen datasets, Hyper-Kvasir and EndoTect 2020, and establish the model efficiency in cross-dataset evaluation. We employ multi-scale testing to examine the model performance on different sizes of polyps. Li-SegPNet performs best on medium-sized polyps with a mIoU and dice score of 0.9086 and 0.9137, respectively on the Kvasir-SEG dataset and 0.9425, 0.9434 of mIoU and dice score, respectively on CVC-ClinicDB. Conclusion: The experimental results convey that we establish a new benchmark on these four datasets for the segmentation of polyps. Significance: The proposed model can be used as a new benchmark model for polyps segmentation. Lesser parameters in comparison to other models give the edge in the applicability of the proposed Li-SegPNet model in real-time clinical analysis.</description><subject>Analytical models</subject><subject>attention</subject><subject>Benchmarks</subject><subject>Biomedical imaging</subject><subject>Cancer</subject><subject>Coders</subject><subject>colon cancer</subject><subject>Colonic Polyps - diagnostic imaging</subject><subject>Colorectal carcinoma</subject><subject>Datasets</subject><subject>Decoding</subject><subject>Deep learning</subject><subject>Encoders-Decoders</subject><subject>Feature maps</subject><subject>Harnesses</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image segmentation</subject><subject>Lightweight</subject><subject>Lithium</subject><subject>Logic gates</subject><subject>Polyps</subject><subject>polyps segmentation</subject><subject>Task analysis</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkMtOwzAQRS0EgvL4AISELLFhk-JH7NrsoJSH1EIlYB0cZwKBNC52KtS_x6GFBZsZjebckX0QOqSkTynRZ0-Xk1GfEcb6nFHJpN5APSqESpjgdBP1CKEq0UynO2g3hPc4piqV22iHd7AmrIdexlXyCK_Te2jP8aixrgCfXMFPx5NY8bh6fWu_oKs4kjNoWtNWrsEx8uX8By6dx0NXOw-2NTWeuno5D_iiMfUyVGEfbZWmDnCw7nvo-Xr0NLxNxg83d8OLcWJ5qtuEWigZGCuIojq3UFiem_jHUkghlchzoWRegCxkqgYDaSwjqsy1HsgUFAjL99Dp6u7cu88FhDabVcFCXZsG3CJkbMAiK7hgET35h767hY_v7SiloxzOVaToirLeheChzOa-mhm_zCjJOv1Zpz_r9Gdr_TFzvL68yGdQ_CV-fUfgaAVUAPC31ppJmnL-DYYZiPg</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Sharma, Pallabi</creator><creator>Gautam, Anmol</creator><creator>Maji, Pallab</creator><creator>Pachori, Ram Bilas</creator><creator>Balabantaray, Bunil Kumar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3447-9251</orcidid><orcidid>https://orcid.org/0000-0002-6061-4309</orcidid></search><sort><creationdate>20230401</creationdate><title>Li-SegPNet: Encoder-Decoder Mode Lightweight Segmentation Network for Colorectal Polyps Analysis</title><author>Sharma, Pallabi ; Gautam, Anmol ; Maji, Pallab ; Pachori, Ram Bilas ; Balabantaray, Bunil Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-1cef2eac50819bcedc3ba109f565685bb586bde6d648776ac208fb99764e8e5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical models</topic><topic>attention</topic><topic>Benchmarks</topic><topic>Biomedical imaging</topic><topic>Cancer</topic><topic>Coders</topic><topic>colon cancer</topic><topic>Colonic Polyps - diagnostic imaging</topic><topic>Colorectal carcinoma</topic><topic>Datasets</topic><topic>Decoding</topic><topic>Deep learning</topic><topic>Encoders-Decoders</topic><topic>Feature maps</topic><topic>Harnesses</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image segmentation</topic><topic>Lightweight</topic><topic>Lithium</topic><topic>Logic gates</topic><topic>Polyps</topic><topic>polyps segmentation</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Pallabi</creatorcontrib><creatorcontrib>Gautam, Anmol</creatorcontrib><creatorcontrib>Maji, Pallab</creatorcontrib><creatorcontrib>Pachori, Ram Bilas</creatorcontrib><creatorcontrib>Balabantaray, Bunil Kumar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sharma, Pallabi</au><au>Gautam, Anmol</au><au>Maji, Pallab</au><au>Pachori, Ram Bilas</au><au>Balabantaray, Bunil Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Li-SegPNet: Encoder-Decoder Mode Lightweight Segmentation Network for Colorectal Polyps Analysis</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>70</volume><issue>4</issue><spage>1330</spage><epage>1339</epage><pages>1330-1339</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>Objective: One of the fundamental and crucial tasks for the automated diagnosis of colorectal cancer is the segmentation of the acute gastrointestinal lesions, most commonly colorectal polyps. Therefore, in this work, we present a novel lightweight encoder-decoder mode of architecture with the attention mechanism to address this challenging task. Methods: The proposed Li-SegPNet architecture harnesses cross-dimensional interaction in feature maps with novel encoder block with modified triplet attention. We have used atrous spatial pyramid pooling to handle the problem of segmenting objects at multiple scales. We also address the semantic gap between the encoder and decoder through a modified skip connection using attention gating. Results: We applied our model to colonoscopy still images and trained and validated it on two publicly available datasets, Kvasir-SEG and CVC-ClinicDB. We achieve mean Intersection-Over-Union (mIoU) and dice scores of 0.88, 0.9058 and 0.8969, 0.9372 on Kvasir-SEG and CVC-ClinicDB, respectively. We analyze the generalizability of Li-SegPNet by testing it on two independent previously unseen datasets, Hyper-Kvasir and EndoTect 2020, and establish the model efficiency in cross-dataset evaluation. We employ multi-scale testing to examine the model performance on different sizes of polyps. Li-SegPNet performs best on medium-sized polyps with a mIoU and dice score of 0.9086 and 0.9137, respectively on the Kvasir-SEG dataset and 0.9425, 0.9434 of mIoU and dice score, respectively on CVC-ClinicDB. Conclusion: The experimental results convey that we establish a new benchmark on these four datasets for the segmentation of polyps. Significance: The proposed model can be used as a new benchmark model for polyps segmentation. Lesser parameters in comparison to other models give the edge in the applicability of the proposed Li-SegPNet model in real-time clinical analysis.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>36269902</pmid><doi>10.1109/TBME.2022.3216269</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3447-9251</orcidid><orcidid>https://orcid.org/0000-0002-6061-4309</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9294
ispartof IEEE transactions on biomedical engineering, 2023-04, Vol.70 (4), p.1330-1339
issn 0018-9294
1558-2531
language eng
recordid cdi_proquest_miscellaneous_2727645352
source IEEE Xplore All Conference Series
subjects Analytical models
attention
Benchmarks
Biomedical imaging
Cancer
Coders
colon cancer
Colonic Polyps - diagnostic imaging
Colorectal carcinoma
Datasets
Decoding
Deep learning
Encoders-Decoders
Feature maps
Harnesses
Humans
Image Processing, Computer-Assisted
Image segmentation
Lightweight
Lithium
Logic gates
Polyps
polyps segmentation
Task analysis
title Li-SegPNet: Encoder-Decoder Mode Lightweight Segmentation Network for Colorectal Polyps Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A38%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Li-SegPNet:%20Encoder-Decoder%20Mode%20Lightweight%20Segmentation%20Network%20for%20Colorectal%20Polyps%20Analysis&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Sharma,%20Pallabi&rft.date=2023-04-01&rft.volume=70&rft.issue=4&rft.spage=1330&rft.epage=1339&rft.pages=1330-1339&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.2022.3216269&rft_dat=%3Cproquest_CHZPO%3E2789362338%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-1cef2eac50819bcedc3ba109f565685bb586bde6d648776ac208fb99764e8e5c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2789362338&rft_id=info:pmid/36269902&rft_ieee_id=9926143&rfr_iscdi=true