Loading…

Engineering a superwetting membrane with spider-web structured carboxymethyl cellulose gel layer for efficient oil-water separation based on biomimetic concept

Superhydrophilic and underwater superoleophobic membranes have recently attracted significant interest as materials for effective oil-water emulsion separation. In this work, a superwetting membrane with a spider web structured gel layer was designed for efficient oil-water separation. Biomaterial,...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules 2022-12, Vol.222, p.2603-2614
Main Authors: Yang, Jing, Lin, Ligang, Wang, Qi, Ma, Wensong, Li, Xinyang, Liu, Zitian, Yang, Xu, Xu, Meina, Cheng, Qi, Zhao, Kongyin, Zhao, Junqiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c345t-a78e887c31fe2e2a94bc1cbf74e4bbe091727a33c240956235e9e1542e3571913
cites cdi_FETCH-LOGICAL-c345t-a78e887c31fe2e2a94bc1cbf74e4bbe091727a33c240956235e9e1542e3571913
container_end_page 2614
container_issue
container_start_page 2603
container_title International journal of biological macromolecules
container_volume 222
creator Yang, Jing
Lin, Ligang
Wang, Qi
Ma, Wensong
Li, Xinyang
Liu, Zitian
Yang, Xu
Xu, Meina
Cheng, Qi
Zhao, Kongyin
Zhao, Junqiang
description Superhydrophilic and underwater superoleophobic membranes have recently attracted significant interest as materials for effective oil-water emulsion separation. In this work, a superwetting membrane with a spider web structured gel layer was designed for efficient oil-water separation. Biomaterial, carboxymethyl cellulose (CMC), was used as the raw material, a spider web structured gel layer was constructed on the PVDF membrane surface by heat-treatment and chemical cross-linking. The hydrophilic gel layer imparted excellent superhydrophilic and underwater superoleophobic properties to the membrane, while the special spider web structure improved the membrane mechanical stability. The fabricated membrane exhibited superhydrophilicity and underwater superoleophobicity. Among different CMC concentration-modified membranes, the M-0.5 membrane containing 0.5 wt% CMC exhibited a flux of 612 L·m−2 h−1 during dichloromethane oil-water emulsion separation, which was 4.2-fold higher than that of the pristine PVDF membrane, while the membrane showed efficient oil-water separation capacity. Additionally, the water flux recovery reached as high as 93.3 %, and oil rejection attained 99.1 %. Meanwhile, the spiderweb-structured gel layer on the membrane surface displayed good mechanical stability. In summary, this novel membrane-modification method, inspired by the spider web structure, was simple, cost effective and environmentally friendly, thereby making it promising for future preparation of highly efficient oil-water emulsion separation membranes. [Display omitted] •The natural biomaterial CMC was used as a gel material to modify the membrane.•Bionic-inspired construction of spider web-like gel layer on membranes.•The ultrathin gel layer on the membrane surface did not block the membrane pores.•The membrane exhibited separation performance and anti-fouling properties for oil-water emulsions.•The special spider web structure gel layer enhanced the membrane mechanical properties.
doi_str_mv 10.1016/j.ijbiomac.2022.10.043
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2727645786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813022022826</els_id><sourcerecordid>2727645786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-a78e887c31fe2e2a94bc1cbf74e4bbe091727a33c240956235e9e1542e3571913</originalsourceid><addsrcrecordid>eNqFUcuO1DAQtBBIDAu_gHzkksGvvG6g1bIgrbQXOFu2pzPboyQObYdhvoZfxdHAeU_dXaoqqboYey_FXgrZfDzt8eQxTi7slVCqgHth9Au2k13bV0II_ZLthDSy6qQWr9mblE4FbWrZ7difu_mIMwDhfOSOp3UBOkPO2znB5MnNwM-Yn3ha8ABUncHzlGkNeSU48ODIx9-XCfLTZeQBxnEdYwJ-hJGP7gLEh0gchgEDwpx5xLE6u1zwBIsjlzHO3LtUrLalxMDihYGHOAdY8lv2anBjgnf_5g378eXu--3X6uHx_tvt54cqaFPnyrUddF0btBxAgXK98UEGP7QGjPcgetmq1mkdlBF93ShdQw-yNgp03cpe6hv24eq7UPy5Qsp2wrTFKfnjmqwq-sbUbdcUanOlBoopEQx2IZwcXawUdmvEnuz_RuzWyIaXRorw01UIJcgvBLJpe0qAAxKEbA8Rn7P4C5GrnHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727645786</pqid></control><display><type>article</type><title>Engineering a superwetting membrane with spider-web structured carboxymethyl cellulose gel layer for efficient oil-water separation based on biomimetic concept</title><source>ScienceDirect Journals</source><creator>Yang, Jing ; Lin, Ligang ; Wang, Qi ; Ma, Wensong ; Li, Xinyang ; Liu, Zitian ; Yang, Xu ; Xu, Meina ; Cheng, Qi ; Zhao, Kongyin ; Zhao, Junqiang</creator><creatorcontrib>Yang, Jing ; Lin, Ligang ; Wang, Qi ; Ma, Wensong ; Li, Xinyang ; Liu, Zitian ; Yang, Xu ; Xu, Meina ; Cheng, Qi ; Zhao, Kongyin ; Zhao, Junqiang</creatorcontrib><description>Superhydrophilic and underwater superoleophobic membranes have recently attracted significant interest as materials for effective oil-water emulsion separation. In this work, a superwetting membrane with a spider web structured gel layer was designed for efficient oil-water separation. Biomaterial, carboxymethyl cellulose (CMC), was used as the raw material, a spider web structured gel layer was constructed on the PVDF membrane surface by heat-treatment and chemical cross-linking. The hydrophilic gel layer imparted excellent superhydrophilic and underwater superoleophobic properties to the membrane, while the special spider web structure improved the membrane mechanical stability. The fabricated membrane exhibited superhydrophilicity and underwater superoleophobicity. Among different CMC concentration-modified membranes, the M-0.5 membrane containing 0.5 wt% CMC exhibited a flux of 612 L·m−2 h−1 during dichloromethane oil-water emulsion separation, which was 4.2-fold higher than that of the pristine PVDF membrane, while the membrane showed efficient oil-water separation capacity. Additionally, the water flux recovery reached as high as 93.3 %, and oil rejection attained 99.1 %. Meanwhile, the spiderweb-structured gel layer on the membrane surface displayed good mechanical stability. In summary, this novel membrane-modification method, inspired by the spider web structure, was simple, cost effective and environmentally friendly, thereby making it promising for future preparation of highly efficient oil-water emulsion separation membranes. [Display omitted] •The natural biomaterial CMC was used as a gel material to modify the membrane.•Bionic-inspired construction of spider web-like gel layer on membranes.•The ultrathin gel layer on the membrane surface did not block the membrane pores.•The membrane exhibited separation performance and anti-fouling properties for oil-water emulsions.•The special spider web structure gel layer enhanced the membrane mechanical properties.</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2022.10.043</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Biomimetic ; Carboxymethyl cellulose ; Oil-water emulsion separation ; Spider web structure ; Superhydrophilic membrane</subject><ispartof>International journal of biological macromolecules, 2022-12, Vol.222, p.2603-2614</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-a78e887c31fe2e2a94bc1cbf74e4bbe091727a33c240956235e9e1542e3571913</citedby><cites>FETCH-LOGICAL-c345t-a78e887c31fe2e2a94bc1cbf74e4bbe091727a33c240956235e9e1542e3571913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Lin, Ligang</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Ma, Wensong</creatorcontrib><creatorcontrib>Li, Xinyang</creatorcontrib><creatorcontrib>Liu, Zitian</creatorcontrib><creatorcontrib>Yang, Xu</creatorcontrib><creatorcontrib>Xu, Meina</creatorcontrib><creatorcontrib>Cheng, Qi</creatorcontrib><creatorcontrib>Zhao, Kongyin</creatorcontrib><creatorcontrib>Zhao, Junqiang</creatorcontrib><title>Engineering a superwetting membrane with spider-web structured carboxymethyl cellulose gel layer for efficient oil-water separation based on biomimetic concept</title><title>International journal of biological macromolecules</title><description>Superhydrophilic and underwater superoleophobic membranes have recently attracted significant interest as materials for effective oil-water emulsion separation. In this work, a superwetting membrane with a spider web structured gel layer was designed for efficient oil-water separation. Biomaterial, carboxymethyl cellulose (CMC), was used as the raw material, a spider web structured gel layer was constructed on the PVDF membrane surface by heat-treatment and chemical cross-linking. The hydrophilic gel layer imparted excellent superhydrophilic and underwater superoleophobic properties to the membrane, while the special spider web structure improved the membrane mechanical stability. The fabricated membrane exhibited superhydrophilicity and underwater superoleophobicity. Among different CMC concentration-modified membranes, the M-0.5 membrane containing 0.5 wt% CMC exhibited a flux of 612 L·m−2 h−1 during dichloromethane oil-water emulsion separation, which was 4.2-fold higher than that of the pristine PVDF membrane, while the membrane showed efficient oil-water separation capacity. Additionally, the water flux recovery reached as high as 93.3 %, and oil rejection attained 99.1 %. Meanwhile, the spiderweb-structured gel layer on the membrane surface displayed good mechanical stability. In summary, this novel membrane-modification method, inspired by the spider web structure, was simple, cost effective and environmentally friendly, thereby making it promising for future preparation of highly efficient oil-water emulsion separation membranes. [Display omitted] •The natural biomaterial CMC was used as a gel material to modify the membrane.•Bionic-inspired construction of spider web-like gel layer on membranes.•The ultrathin gel layer on the membrane surface did not block the membrane pores.•The membrane exhibited separation performance and anti-fouling properties for oil-water emulsions.•The special spider web structure gel layer enhanced the membrane mechanical properties.</description><subject>Biomimetic</subject><subject>Carboxymethyl cellulose</subject><subject>Oil-water emulsion separation</subject><subject>Spider web structure</subject><subject>Superhydrophilic membrane</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUcuO1DAQtBBIDAu_gHzkksGvvG6g1bIgrbQXOFu2pzPboyQObYdhvoZfxdHAeU_dXaoqqboYey_FXgrZfDzt8eQxTi7slVCqgHth9Au2k13bV0II_ZLthDSy6qQWr9mblE4FbWrZ7difu_mIMwDhfOSOp3UBOkPO2znB5MnNwM-Yn3ha8ABUncHzlGkNeSU48ODIx9-XCfLTZeQBxnEdYwJ-hJGP7gLEh0gchgEDwpx5xLE6u1zwBIsjlzHO3LtUrLalxMDihYGHOAdY8lv2anBjgnf_5g378eXu--3X6uHx_tvt54cqaFPnyrUddF0btBxAgXK98UEGP7QGjPcgetmq1mkdlBF93ShdQw-yNgp03cpe6hv24eq7UPy5Qsp2wrTFKfnjmqwq-sbUbdcUanOlBoopEQx2IZwcXawUdmvEnuz_RuzWyIaXRorw01UIJcgvBLJpe0qAAxKEbA8Rn7P4C5GrnHw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Yang, Jing</creator><creator>Lin, Ligang</creator><creator>Wang, Qi</creator><creator>Ma, Wensong</creator><creator>Li, Xinyang</creator><creator>Liu, Zitian</creator><creator>Yang, Xu</creator><creator>Xu, Meina</creator><creator>Cheng, Qi</creator><creator>Zhao, Kongyin</creator><creator>Zhao, Junqiang</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20221201</creationdate><title>Engineering a superwetting membrane with spider-web structured carboxymethyl cellulose gel layer for efficient oil-water separation based on biomimetic concept</title><author>Yang, Jing ; Lin, Ligang ; Wang, Qi ; Ma, Wensong ; Li, Xinyang ; Liu, Zitian ; Yang, Xu ; Xu, Meina ; Cheng, Qi ; Zhao, Kongyin ; Zhao, Junqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-a78e887c31fe2e2a94bc1cbf74e4bbe091727a33c240956235e9e1542e3571913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomimetic</topic><topic>Carboxymethyl cellulose</topic><topic>Oil-water emulsion separation</topic><topic>Spider web structure</topic><topic>Superhydrophilic membrane</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Lin, Ligang</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Ma, Wensong</creatorcontrib><creatorcontrib>Li, Xinyang</creatorcontrib><creatorcontrib>Liu, Zitian</creatorcontrib><creatorcontrib>Yang, Xu</creatorcontrib><creatorcontrib>Xu, Meina</creatorcontrib><creatorcontrib>Cheng, Qi</creatorcontrib><creatorcontrib>Zhao, Kongyin</creatorcontrib><creatorcontrib>Zhao, Junqiang</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jing</au><au>Lin, Ligang</au><au>Wang, Qi</au><au>Ma, Wensong</au><au>Li, Xinyang</au><au>Liu, Zitian</au><au>Yang, Xu</au><au>Xu, Meina</au><au>Cheng, Qi</au><au>Zhao, Kongyin</au><au>Zhao, Junqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering a superwetting membrane with spider-web structured carboxymethyl cellulose gel layer for efficient oil-water separation based on biomimetic concept</atitle><jtitle>International journal of biological macromolecules</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>222</volume><spage>2603</spage><epage>2614</epage><pages>2603-2614</pages><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>Superhydrophilic and underwater superoleophobic membranes have recently attracted significant interest as materials for effective oil-water emulsion separation. In this work, a superwetting membrane with a spider web structured gel layer was designed for efficient oil-water separation. Biomaterial, carboxymethyl cellulose (CMC), was used as the raw material, a spider web structured gel layer was constructed on the PVDF membrane surface by heat-treatment and chemical cross-linking. The hydrophilic gel layer imparted excellent superhydrophilic and underwater superoleophobic properties to the membrane, while the special spider web structure improved the membrane mechanical stability. The fabricated membrane exhibited superhydrophilicity and underwater superoleophobicity. Among different CMC concentration-modified membranes, the M-0.5 membrane containing 0.5 wt% CMC exhibited a flux of 612 L·m−2 h−1 during dichloromethane oil-water emulsion separation, which was 4.2-fold higher than that of the pristine PVDF membrane, while the membrane showed efficient oil-water separation capacity. Additionally, the water flux recovery reached as high as 93.3 %, and oil rejection attained 99.1 %. Meanwhile, the spiderweb-structured gel layer on the membrane surface displayed good mechanical stability. In summary, this novel membrane-modification method, inspired by the spider web structure, was simple, cost effective and environmentally friendly, thereby making it promising for future preparation of highly efficient oil-water emulsion separation membranes. [Display omitted] •The natural biomaterial CMC was used as a gel material to modify the membrane.•Bionic-inspired construction of spider web-like gel layer on membranes.•The ultrathin gel layer on the membrane surface did not block the membrane pores.•The membrane exhibited separation performance and anti-fouling properties for oil-water emulsions.•The special spider web structure gel layer enhanced the membrane mechanical properties.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.ijbiomac.2022.10.043</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-8130
ispartof International journal of biological macromolecules, 2022-12, Vol.222, p.2603-2614
issn 0141-8130
1879-0003
language eng
recordid cdi_proquest_miscellaneous_2727645786
source ScienceDirect Journals
subjects Biomimetic
Carboxymethyl cellulose
Oil-water emulsion separation
Spider web structure
Superhydrophilic membrane
title Engineering a superwetting membrane with spider-web structured carboxymethyl cellulose gel layer for efficient oil-water separation based on biomimetic concept
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20a%20superwetting%20membrane%20with%20spider-web%20structured%20carboxymethyl%20cellulose%20gel%20layer%20for%20efficient%20oil-water%20separation%20based%20on%20biomimetic%20concept&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Yang,%20Jing&rft.date=2022-12-01&rft.volume=222&rft.spage=2603&rft.epage=2614&rft.pages=2603-2614&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2022.10.043&rft_dat=%3Cproquest_cross%3E2727645786%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-a78e887c31fe2e2a94bc1cbf74e4bbe091727a33c240956235e9e1542e3571913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2727645786&rft_id=info:pmid/&rfr_iscdi=true