Loading…

SRSF1 promotes ASMC proliferation in asthma by competitively binding CCND2 with miRNA-135a

Asthma is an inflammatory syndrome characterized by airway hyperresponsiveness, bronchial inflammation, and airway remodeling. Abnormal proliferation of airway smooth muscle cells (ASMCs) is the main pathological feature of asthma. This study investigated the function and mechanism of serine arginin...

Full description

Saved in:
Bibliographic Details
Published in:Pulmonary pharmacology & therapeutics 2022-12, Vol.77, p.102173-102173, Article 102173
Main Authors: Guo, Ya-li, Chen, Zhuo-chang, Li, Nan, Tian, Cui-jie, Cheng, Dong-jun, Tang, Xue-yi, Zhang, Luo-xian, Zhang, Xiao-yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Asthma is an inflammatory syndrome characterized by airway hyperresponsiveness, bronchial inflammation, and airway remodeling. Abnormal proliferation of airway smooth muscle cells (ASMCs) is the main pathological feature of asthma. This study investigated the function and mechanism of serine arginine-rich splicing factor 1 (SRSF1) in ASMC proliferation in asthma. SRSF1 expressions in the bronchi of ovalbumin-induced asthmatic mice and IgE-treated mouse ASMCs (mASMCs) were evaluated using quantitative real-time PCR and Western blot. The localization and expression of SRSF1 in the bronchi of asthmatic mice were assessed by immunohistochemistry. Functionally, gain- and loss-of-function assays, flow cytometry, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays were conducted. Mechanistically, RNA degradation assay, RNA immunoprecipitation, RNA pull-down, and dual-luciferase reporter gene assays were carried out. SRSF1 was highly expressed in the bronchi of ovalbumin-induced asthma mice and IgE-treated mASMCs and was mainly located in the nucleus. Experiments on the function of SRSF1 showed that the silencing of SRSF1 induced the cell cycle of mASMC arrest and restrained mASMC proliferation. Investigations into the mechanism of SRSF1 revealed that SRSF1 and miR-135a are competitively bound to the 3′UTR region of Cyclin D2 (CCND2). SRSF1 overexpression repressed the degradation of CCND2 mRNA, and miR-135a negatively regulated CCND2 expression. Furthermore, SRSF1 knockdown inhibited ASMC proliferation in asthma mouse models by regulating the levels of miR-135a and CCND2. SRSF1 knockdown repressed ASMC proliferation in asthma by regulating miR-135a/CCND2 levels.
ISSN:1094-5539
1522-9629
DOI:10.1016/j.pupt.2022.102173