Loading…
Deep Learning of Coronary Calcium Scores From PET/CT Attenuation Maps Accurately Predicts Adverse Cardiovascular Events
Assessment of coronary artery calcium (CAC) by computed tomographic (CT) imaging provides an accurate measure of atherosclerotic burden. CAC is also visible in computed tomographic attenuation correction (CTAC) scans, always acquired with cardiac positron emission tomographic (PET) imaging. The aim...
Saved in:
Published in: | JACC. Cardiovascular imaging 2023-05, Vol.16 (5), p.675-687 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Assessment of coronary artery calcium (CAC) by computed tomographic (CT) imaging provides an accurate measure of atherosclerotic burden. CAC is also visible in computed tomographic attenuation correction (CTAC) scans, always acquired with cardiac positron emission tomographic (PET) imaging.
The aim of this study was to develop a deep-learning (DL) model capable of fully automated CAC definition from PET CTAC scans.
The novel DL model, originally developed for video applications, was adapted to rapidly quantify CAC. The model was trained using 9,543 expert-annotated CT scans and was tested in 4,331 patients from an external cohort undergoing PET/CT imaging with major adverse cardiac events (MACEs) (follow-up 4.3 years), including same-day paired electrocardiographically gated CAC scans available in 2,737 patients. MACE risk stratification in 4 CAC score categories (0, 1-100, 101-400, and >400) was analyzed and CAC scores derived from electrocardiographically gated CT scans (standard scores) by expert observers were compared with automatic DL scores from CTAC scans.
Automatic DL scoring required |
---|---|
ISSN: | 1936-878X 1876-7591 |
DOI: | 10.1016/j.jcmg.2022.06.006 |