Loading…

Fused Cycloheptatriene–BODIPY Is a High-Performance Near-Infrared Probe to Image Tau Tangles

Neurofibrillary tangles (NFTs), which are composed of abnormally hyperphosphorylated Tau, are one of the main pathologic hallmarks of Alzheimer’s disease and other tauopathies. The fluorescent imaging probes currently used to target NFTs cannot distinguish them well from β-amyloid plaques, thus limi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medicinal chemistry 2022-11, Vol.65 (21), p.14527-14538
Main Authors: Xie, Tianxin, Li, Yuying, Tian, Chuan, Yuan, Chang, Dai, Bin, Wang, Shubo, Zhou, Kaixiang, Liu, Jiaqi, Tan, Hongwei, Liang, Yi, Dai, Jiapei, Chen, Baian, Cui, Mengchao
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neurofibrillary tangles (NFTs), which are composed of abnormally hyperphosphorylated Tau, are one of the main pathologic hallmarks of Alzheimer’s disease and other tauopathies. The fluorescent imaging probes currently used to target NFTs cannot distinguish them well from β-amyloid plaques, thus limiting their utility to diagnose diseases. Here, we developed a fused cycloheptatriene–BODIPY derivative (TNIR7-1A) that displays properties favorable for near-infrared (NIR) imaging with high affinity and specificity to NFTs in vitro. In addition, TNIR7-1A effectively penetrated the blood–brain barrier and clearly distinguished tauopathy in transgenic mice (rTg4510) from control mice using NIR fluorescence imaging in vivo. The sensitivity and specificity of TNIR7-1A for NFTs were confirmed ex vivo by fluorescence staining of the tauopathy mouse model, while molecular docking studies indicated that TNIR7-1A bound to NFTs through hydrophobic interactions. These results suggest that TNIR7-1A can act as a high-performance probe to detect NFTs in vitro and in vivo selectively.
ISSN:0022-2623
1520-4804
DOI:10.1021/acs.jmedchem.2c00859