Loading…

Radiomics for prediction of response to EGFR-TKI based on metastasis/brain parenchyma (M/BP)-interface

Purpose To evaluate the potential of subregional radiomics as a novel tumor marker in predicting epidermal growth factor receptor (EGFR) mutation status and response to EGFR-tyrosine kinase inhibitor (TKI) therapy in NSCLC patients with brain metastasis (BM). Materials and methods We included 230 pa...

Full description

Saved in:
Bibliographic Details
Published in:Radiologia medica 2022-12, Vol.127 (12), p.1342-1354
Main Authors: Fan, Ying, Zhao, Zilong, Wang, Xingling, Ai, Hua, Yang, Chunna, Luo, Yahong, Jiang, Xiran
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c441t-6c680f45cb14467c4cb41c21b88f89c43d44f9de0126feb72ec6743fbd1ea5743
cites cdi_FETCH-LOGICAL-c441t-6c680f45cb14467c4cb41c21b88f89c43d44f9de0126feb72ec6743fbd1ea5743
container_end_page 1354
container_issue 12
container_start_page 1342
container_title Radiologia medica
container_volume 127
creator Fan, Ying
Zhao, Zilong
Wang, Xingling
Ai, Hua
Yang, Chunna
Luo, Yahong
Jiang, Xiran
description Purpose To evaluate the potential of subregional radiomics as a novel tumor marker in predicting epidermal growth factor receptor (EGFR) mutation status and response to EGFR-tyrosine kinase inhibitor (TKI) therapy in NSCLC patients with brain metastasis (BM). Materials and methods We included 230 patients from center 1, and 80 patients were included from center 2 to form a primary and external validation cohort, respectively. Patients underwent contrast-enhanced T1-weighted and T2-weighted MRI scans before treatment. The individual- and population-level clustering was used to partition the peritumoral edema area (POA) into phenotypically consistent subregions. Radiomics features were calculated and selected from the tumor active area (TAA), POA and subregions, and used to develop models. Prediction values of each region were investigated and compared with receiver operating characteristic curves and Delong test. Results For predicting EGFR mutations, a multi-region combined model (EGFR-Fusion) was developed based on joint of the partitioned metastasis/brain parenchyma (M/BP)-interface and TAA, and generated the highest prediction performance in the training (AUC = 0.945, SEN = 0.878, SPE = 0.937), internal validation (AUC = 0.880, SEN = 0.733, SPE = 0.969), and external validation (AUC = 0.895, SEN = 0.875, SPE = 0.800) cohorts. For predicting response to EGFR-TKI, the developed multi-region combined model (TKI-Fusion) yielded predictive AUCs of 0.869 (SEN = 0.717, SPE = 0.884), 0.786 (SEN = 0.708, SPE = 0.818), and 0.802 (SEN = 0.750, SPE = 0.800) in the training, internal validation and external validation cohort, respectively. Conclusion Our study revealed that complementary information regarding the EGFR status and response to EGFR-TKI can be provided by subregional radiomics. The proposed radiomics models may be new markers to guide treatment plans for NSCLC patients with BM.
doi_str_mv 10.1007/s11547-022-01569-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2729030073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2754060579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-6c680f45cb14467c4cb41c21b88f89c43d44f9de0126feb72ec6743fbd1ea5743</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhq2KqizQP9BDZYnLcnB37DhOcoQVXypVEaJny3HG4NUmDnb2sP8ew0Jb9VBppBlpnnntmZeQLxy-cYBqkTgvZcVACAa8VA0rPpAZr4ViqqmLvb_qfXKQ0gpAAofmE9kvlKglFDAj7s50PvTeJupCpGPEztvJh4EGRyOmMQwJ6RTo-eXFHbv_fk1bk7CjGehxMimHT4s2Gj_Q0UQc7OO2N3T-Y3F2e8L8MGF0xuIR-ejMOuHnt3xIfl2c3y-v2M3Py-vl6Q2zUvKJKatqcLK0LZdSVVbaVnIreFvXrm6sLDopXdMhcKEctpVAqypZuLbjaMpcHZL5TneM4WmDadK9TxbXazNg2CQtKtHkvaEqMnr8D7oKmzjk32WqlKCgrJpMiR1lY0gpotNj9L2JW81Bv7igdy7o7IJ-dUG_SH99k960PXa_R97PnoFiB6TcGh4w_nn7P7LPnY6RBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754060579</pqid></control><display><type>article</type><title>Radiomics for prediction of response to EGFR-TKI based on metastasis/brain parenchyma (M/BP)-interface</title><source>Springer Link</source><creator>Fan, Ying ; Zhao, Zilong ; Wang, Xingling ; Ai, Hua ; Yang, Chunna ; Luo, Yahong ; Jiang, Xiran</creator><creatorcontrib>Fan, Ying ; Zhao, Zilong ; Wang, Xingling ; Ai, Hua ; Yang, Chunna ; Luo, Yahong ; Jiang, Xiran</creatorcontrib><description>Purpose To evaluate the potential of subregional radiomics as a novel tumor marker in predicting epidermal growth factor receptor (EGFR) mutation status and response to EGFR-tyrosine kinase inhibitor (TKI) therapy in NSCLC patients with brain metastasis (BM). Materials and methods We included 230 patients from center 1, and 80 patients were included from center 2 to form a primary and external validation cohort, respectively. Patients underwent contrast-enhanced T1-weighted and T2-weighted MRI scans before treatment. The individual- and population-level clustering was used to partition the peritumoral edema area (POA) into phenotypically consistent subregions. Radiomics features were calculated and selected from the tumor active area (TAA), POA and subregions, and used to develop models. Prediction values of each region were investigated and compared with receiver operating characteristic curves and Delong test. Results For predicting EGFR mutations, a multi-region combined model (EGFR-Fusion) was developed based on joint of the partitioned metastasis/brain parenchyma (M/BP)-interface and TAA, and generated the highest prediction performance in the training (AUC = 0.945, SEN = 0.878, SPE = 0.937), internal validation (AUC = 0.880, SEN = 0.733, SPE = 0.969), and external validation (AUC = 0.895, SEN = 0.875, SPE = 0.800) cohorts. For predicting response to EGFR-TKI, the developed multi-region combined model (TKI-Fusion) yielded predictive AUCs of 0.869 (SEN = 0.717, SPE = 0.884), 0.786 (SEN = 0.708, SPE = 0.818), and 0.802 (SEN = 0.750, SPE = 0.800) in the training, internal validation and external validation cohort, respectively. Conclusion Our study revealed that complementary information regarding the EGFR status and response to EGFR-TKI can be provided by subregional radiomics. The proposed radiomics models may be new markers to guide treatment plans for NSCLC patients with BM.</description><identifier>ISSN: 1826-6983</identifier><identifier>ISSN: 0033-8362</identifier><identifier>EISSN: 1826-6983</identifier><identifier>DOI: 10.1007/s11547-022-01569-3</identifier><identifier>PMID: 36284030</identifier><language>eng</language><publisher>Milan: Springer Milan</publisher><subject>Brain ; Brain Neoplasms - diagnostic imaging ; Brain Neoplasms - drug therapy ; Carcinoma, Non-Small-Cell Lung - diagnostic imaging ; Carcinoma, Non-Small-Cell Lung - drug therapy ; Clustering ; Computer Application ; Diagnostic Radiology ; Edema ; ErbB Receptors - genetics ; Growth factors ; Humans ; Imaging ; Interventional Radiology ; Kinases ; Lung Neoplasms - diagnostic imaging ; Lung Neoplasms - drug therapy ; Medicine ; Medicine &amp; Public Health ; Metastasis ; Mutation ; Neuroradiology ; Radiology ; Radiomics ; Retrospective Studies ; Training ; Tumors ; Tyrosine ; Ultrasound</subject><ispartof>Radiologia medica, 2022-12, Vol.127 (12), p.1342-1354</ispartof><rights>Italian Society of Medical Radiology 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. Italian Society of Medical Radiology.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-6c680f45cb14467c4cb41c21b88f89c43d44f9de0126feb72ec6743fbd1ea5743</citedby><cites>FETCH-LOGICAL-c441t-6c680f45cb14467c4cb41c21b88f89c43d44f9de0126feb72ec6743fbd1ea5743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36284030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Ying</creatorcontrib><creatorcontrib>Zhao, Zilong</creatorcontrib><creatorcontrib>Wang, Xingling</creatorcontrib><creatorcontrib>Ai, Hua</creatorcontrib><creatorcontrib>Yang, Chunna</creatorcontrib><creatorcontrib>Luo, Yahong</creatorcontrib><creatorcontrib>Jiang, Xiran</creatorcontrib><title>Radiomics for prediction of response to EGFR-TKI based on metastasis/brain parenchyma (M/BP)-interface</title><title>Radiologia medica</title><addtitle>Radiol med</addtitle><addtitle>Radiol Med</addtitle><description>Purpose To evaluate the potential of subregional radiomics as a novel tumor marker in predicting epidermal growth factor receptor (EGFR) mutation status and response to EGFR-tyrosine kinase inhibitor (TKI) therapy in NSCLC patients with brain metastasis (BM). Materials and methods We included 230 patients from center 1, and 80 patients were included from center 2 to form a primary and external validation cohort, respectively. Patients underwent contrast-enhanced T1-weighted and T2-weighted MRI scans before treatment. The individual- and population-level clustering was used to partition the peritumoral edema area (POA) into phenotypically consistent subregions. Radiomics features were calculated and selected from the tumor active area (TAA), POA and subregions, and used to develop models. Prediction values of each region were investigated and compared with receiver operating characteristic curves and Delong test. Results For predicting EGFR mutations, a multi-region combined model (EGFR-Fusion) was developed based on joint of the partitioned metastasis/brain parenchyma (M/BP)-interface and TAA, and generated the highest prediction performance in the training (AUC = 0.945, SEN = 0.878, SPE = 0.937), internal validation (AUC = 0.880, SEN = 0.733, SPE = 0.969), and external validation (AUC = 0.895, SEN = 0.875, SPE = 0.800) cohorts. For predicting response to EGFR-TKI, the developed multi-region combined model (TKI-Fusion) yielded predictive AUCs of 0.869 (SEN = 0.717, SPE = 0.884), 0.786 (SEN = 0.708, SPE = 0.818), and 0.802 (SEN = 0.750, SPE = 0.800) in the training, internal validation and external validation cohort, respectively. Conclusion Our study revealed that complementary information regarding the EGFR status and response to EGFR-TKI can be provided by subregional radiomics. The proposed radiomics models may be new markers to guide treatment plans for NSCLC patients with BM.</description><subject>Brain</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Brain Neoplasms - drug therapy</subject><subject>Carcinoma, Non-Small-Cell Lung - diagnostic imaging</subject><subject>Carcinoma, Non-Small-Cell Lung - drug therapy</subject><subject>Clustering</subject><subject>Computer Application</subject><subject>Diagnostic Radiology</subject><subject>Edema</subject><subject>ErbB Receptors - genetics</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Imaging</subject><subject>Interventional Radiology</subject><subject>Kinases</subject><subject>Lung Neoplasms - diagnostic imaging</subject><subject>Lung Neoplasms - drug therapy</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metastasis</subject><subject>Mutation</subject><subject>Neuroradiology</subject><subject>Radiology</subject><subject>Radiomics</subject><subject>Retrospective Studies</subject><subject>Training</subject><subject>Tumors</subject><subject>Tyrosine</subject><subject>Ultrasound</subject><issn>1826-6983</issn><issn>0033-8362</issn><issn>1826-6983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU1P3DAQhq2KqizQP9BDZYnLcnB37DhOcoQVXypVEaJny3HG4NUmDnb2sP8ew0Jb9VBppBlpnnntmZeQLxy-cYBqkTgvZcVACAa8VA0rPpAZr4ViqqmLvb_qfXKQ0gpAAofmE9kvlKglFDAj7s50PvTeJupCpGPEztvJh4EGRyOmMQwJ6RTo-eXFHbv_fk1bk7CjGehxMimHT4s2Gj_Q0UQc7OO2N3T-Y3F2e8L8MGF0xuIR-ejMOuHnt3xIfl2c3y-v2M3Py-vl6Q2zUvKJKatqcLK0LZdSVVbaVnIreFvXrm6sLDopXdMhcKEctpVAqypZuLbjaMpcHZL5TneM4WmDadK9TxbXazNg2CQtKtHkvaEqMnr8D7oKmzjk32WqlKCgrJpMiR1lY0gpotNj9L2JW81Bv7igdy7o7IJ-dUG_SH99k960PXa_R97PnoFiB6TcGh4w_nn7P7LPnY6RBg</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Fan, Ying</creator><creator>Zhao, Zilong</creator><creator>Wang, Xingling</creator><creator>Ai, Hua</creator><creator>Yang, Chunna</creator><creator>Luo, Yahong</creator><creator>Jiang, Xiran</creator><general>Springer Milan</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20221201</creationdate><title>Radiomics for prediction of response to EGFR-TKI based on metastasis/brain parenchyma (M/BP)-interface</title><author>Fan, Ying ; Zhao, Zilong ; Wang, Xingling ; Ai, Hua ; Yang, Chunna ; Luo, Yahong ; Jiang, Xiran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-6c680f45cb14467c4cb41c21b88f89c43d44f9de0126feb72ec6743fbd1ea5743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brain</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Brain Neoplasms - drug therapy</topic><topic>Carcinoma, Non-Small-Cell Lung - diagnostic imaging</topic><topic>Carcinoma, Non-Small-Cell Lung - drug therapy</topic><topic>Clustering</topic><topic>Computer Application</topic><topic>Diagnostic Radiology</topic><topic>Edema</topic><topic>ErbB Receptors - genetics</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Imaging</topic><topic>Interventional Radiology</topic><topic>Kinases</topic><topic>Lung Neoplasms - diagnostic imaging</topic><topic>Lung Neoplasms - drug therapy</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metastasis</topic><topic>Mutation</topic><topic>Neuroradiology</topic><topic>Radiology</topic><topic>Radiomics</topic><topic>Retrospective Studies</topic><topic>Training</topic><topic>Tumors</topic><topic>Tyrosine</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Ying</creatorcontrib><creatorcontrib>Zhao, Zilong</creatorcontrib><creatorcontrib>Wang, Xingling</creatorcontrib><creatorcontrib>Ai, Hua</creatorcontrib><creatorcontrib>Yang, Chunna</creatorcontrib><creatorcontrib>Luo, Yahong</creatorcontrib><creatorcontrib>Jiang, Xiran</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Radiologia medica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Ying</au><au>Zhao, Zilong</au><au>Wang, Xingling</au><au>Ai, Hua</au><au>Yang, Chunna</au><au>Luo, Yahong</au><au>Jiang, Xiran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiomics for prediction of response to EGFR-TKI based on metastasis/brain parenchyma (M/BP)-interface</atitle><jtitle>Radiologia medica</jtitle><stitle>Radiol med</stitle><addtitle>Radiol Med</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>127</volume><issue>12</issue><spage>1342</spage><epage>1354</epage><pages>1342-1354</pages><issn>1826-6983</issn><issn>0033-8362</issn><eissn>1826-6983</eissn><abstract>Purpose To evaluate the potential of subregional radiomics as a novel tumor marker in predicting epidermal growth factor receptor (EGFR) mutation status and response to EGFR-tyrosine kinase inhibitor (TKI) therapy in NSCLC patients with brain metastasis (BM). Materials and methods We included 230 patients from center 1, and 80 patients were included from center 2 to form a primary and external validation cohort, respectively. Patients underwent contrast-enhanced T1-weighted and T2-weighted MRI scans before treatment. The individual- and population-level clustering was used to partition the peritumoral edema area (POA) into phenotypically consistent subregions. Radiomics features were calculated and selected from the tumor active area (TAA), POA and subregions, and used to develop models. Prediction values of each region were investigated and compared with receiver operating characteristic curves and Delong test. Results For predicting EGFR mutations, a multi-region combined model (EGFR-Fusion) was developed based on joint of the partitioned metastasis/brain parenchyma (M/BP)-interface and TAA, and generated the highest prediction performance in the training (AUC = 0.945, SEN = 0.878, SPE = 0.937), internal validation (AUC = 0.880, SEN = 0.733, SPE = 0.969), and external validation (AUC = 0.895, SEN = 0.875, SPE = 0.800) cohorts. For predicting response to EGFR-TKI, the developed multi-region combined model (TKI-Fusion) yielded predictive AUCs of 0.869 (SEN = 0.717, SPE = 0.884), 0.786 (SEN = 0.708, SPE = 0.818), and 0.802 (SEN = 0.750, SPE = 0.800) in the training, internal validation and external validation cohort, respectively. Conclusion Our study revealed that complementary information regarding the EGFR status and response to EGFR-TKI can be provided by subregional radiomics. The proposed radiomics models may be new markers to guide treatment plans for NSCLC patients with BM.</abstract><cop>Milan</cop><pub>Springer Milan</pub><pmid>36284030</pmid><doi>10.1007/s11547-022-01569-3</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1826-6983
ispartof Radiologia medica, 2022-12, Vol.127 (12), p.1342-1354
issn 1826-6983
0033-8362
1826-6983
language eng
recordid cdi_proquest_miscellaneous_2729030073
source Springer Link
subjects Brain
Brain Neoplasms - diagnostic imaging
Brain Neoplasms - drug therapy
Carcinoma, Non-Small-Cell Lung - diagnostic imaging
Carcinoma, Non-Small-Cell Lung - drug therapy
Clustering
Computer Application
Diagnostic Radiology
Edema
ErbB Receptors - genetics
Growth factors
Humans
Imaging
Interventional Radiology
Kinases
Lung Neoplasms - diagnostic imaging
Lung Neoplasms - drug therapy
Medicine
Medicine & Public Health
Metastasis
Mutation
Neuroradiology
Radiology
Radiomics
Retrospective Studies
Training
Tumors
Tyrosine
Ultrasound
title Radiomics for prediction of response to EGFR-TKI based on metastasis/brain parenchyma (M/BP)-interface
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiomics%20for%20prediction%20of%20response%20to%20EGFR-TKI%20based%20on%20metastasis/brain%20parenchyma%20(M/BP)-interface&rft.jtitle=Radiologia%20medica&rft.au=Fan,%20Ying&rft.date=2022-12-01&rft.volume=127&rft.issue=12&rft.spage=1342&rft.epage=1354&rft.pages=1342-1354&rft.issn=1826-6983&rft.eissn=1826-6983&rft_id=info:doi/10.1007/s11547-022-01569-3&rft_dat=%3Cproquest_cross%3E2754060579%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-6c680f45cb14467c4cb41c21b88f89c43d44f9de0126feb72ec6743fbd1ea5743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2754060579&rft_id=info:pmid/36284030&rfr_iscdi=true