Loading…

Applicability of hybrid bionic optimization models with kernel-based extreme learning machine algorithm for predicting daily reference evapotranspiration: a case study in arid and semiarid regions, China

The accurate prediction of daily reference crop evapotranspiration (ET O ) enables effective management decision-making for agricultural water resources; this is crucial for developing water-efficient agriculture. To improve the accuracy of ET O forecasts in data-deficient areas, this study uses a d...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2023-02, Vol.30 (9), p.22396-22412
Main Authors: Zhao, Long, Zhao, Xinbo, Li, Yuanze, Shi, Yi, Zhou, Hanmi, Li, Xiuzhen, Wang, Xiaodong, Xing, Xuguang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-ebf53b4d8861b0ee954efd8401b0c2ec3bc84aba25e77d046d68cb896d67628a3
cites cdi_FETCH-LOGICAL-c347t-ebf53b4d8861b0ee954efd8401b0c2ec3bc84aba25e77d046d68cb896d67628a3
container_end_page 22412
container_issue 9
container_start_page 22396
container_title Environmental science and pollution research international
container_volume 30
creator Zhao, Long
Zhao, Xinbo
Li, Yuanze
Shi, Yi
Zhou, Hanmi
Li, Xiuzhen
Wang, Xiaodong
Xing, Xuguang
description The accurate prediction of daily reference crop evapotranspiration (ET O ) enables effective management decision-making for agricultural water resources; this is crucial for developing water-efficient agriculture. To improve the accuracy of ET O forecasts in data-deficient areas, this study uses a decision tree algorithm (classification and regression tree [CART]) to obtain the effects of various factors on ET O at typical stations in arid and semiarid regions of China. A combination of factors with considerable influence on the model was selected as the input for constructing a kernel-extreme-learning-machine (KELM) daily reference evapotranspiration prediction model, and three bionic optimization algorithms (i.e., sparrow search optimization algorithm, Harris Hawks optimization algorithm, and lion swarm optimization algorithm) were integrated to optimize KELM prediction model parameters and improve the accuracy of daily reference evapotranspiration prediction. The results indicate that temperature (maximum or minimum temperature) is the primary factor influencing ET O , and the range of importance is 0.399–0.554. RH and Ra are also key factors influencing ET O ; the hybrid model optimized using the bionic optimization algorithm provides advantages over the independent KELM model, and the SSA-KELM model has the highest accuracy among hybrid models, with a root-mean-square error of 0.408–1.964, R 2 of 0.545–0.982, mean absolute error of 0.273–1.086, and Nash–Sutcliffe efficiency coefficient of 0.658–0.967. The top five factors extracted using the CART algorithm are recommended as inputs for constructing the SSA-KELM model for ET O estimation in arid and semiarid regions of China, and this model can also serve as a reference for ET O forecasting in similar regions.
doi_str_mv 10.1007/s11356-022-23786-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2729521099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2729521099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-ebf53b4d8861b0ee954efd8401b0c2ec3bc84aba25e77d046d68cb896d67628a3</originalsourceid><addsrcrecordid>eNp9kctuFDEQRVsIRELgB1igWrJIE9v9ZheNwkOKlA2sLT-qZxzcdmO7Az2_yE_hmQmIFavylU_dcvkWxWtK3lFCuqtIadW0JWGsZFXXt-X-SXFOW1qXXT0MT_85nxUvYrwnhJGBdc-Ls6pl_UBZdV78up5na5SQxpq0gh9ht8pgNEjjnVHg52QmsxcpS5i8Rhvhh0k7-IbBoS2liKgBf6aAE4JFEZxxW5iE2hmHIOzWh4xPMPoAc0BtVDoAWhi7QsARAzqFgA9i9ikIF2cTjtPegwCV3SGmRa9gHIjDu4TTEHEyRxFwm8l4CZs8Tbwsno3CRnz1WC-Krx9uvmw-lbd3Hz9vrm9LVdVdKlGOTSVr3fctlQRxaGocdV-TrBRDVUnV10IK1mDXaVK3uu2V7Idcu_xvoroo3p585-C_LxgTn0xUaK1w6JfIWceGhlEyDBllJ1QFH2Nel8_BTCKsnBJ-CJGfQuQ5RH4Mke9z05tH_0VOqP-2_EktA9UJiPnKbTHwe78El3f-n-1vRMOvAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729521099</pqid></control><display><type>article</type><title>Applicability of hybrid bionic optimization models with kernel-based extreme learning machine algorithm for predicting daily reference evapotranspiration: a case study in arid and semiarid regions, China</title><source>ABI/INFORM Collection</source><source>Springer Link</source><creator>Zhao, Long ; Zhao, Xinbo ; Li, Yuanze ; Shi, Yi ; Zhou, Hanmi ; Li, Xiuzhen ; Wang, Xiaodong ; Xing, Xuguang</creator><creatorcontrib>Zhao, Long ; Zhao, Xinbo ; Li, Yuanze ; Shi, Yi ; Zhou, Hanmi ; Li, Xiuzhen ; Wang, Xiaodong ; Xing, Xuguang</creatorcontrib><description>The accurate prediction of daily reference crop evapotranspiration (ET O ) enables effective management decision-making for agricultural water resources; this is crucial for developing water-efficient agriculture. To improve the accuracy of ET O forecasts in data-deficient areas, this study uses a decision tree algorithm (classification and regression tree [CART]) to obtain the effects of various factors on ET O at typical stations in arid and semiarid regions of China. A combination of factors with considerable influence on the model was selected as the input for constructing a kernel-extreme-learning-machine (KELM) daily reference evapotranspiration prediction model, and three bionic optimization algorithms (i.e., sparrow search optimization algorithm, Harris Hawks optimization algorithm, and lion swarm optimization algorithm) were integrated to optimize KELM prediction model parameters and improve the accuracy of daily reference evapotranspiration prediction. The results indicate that temperature (maximum or minimum temperature) is the primary factor influencing ET O , and the range of importance is 0.399–0.554. RH and Ra are also key factors influencing ET O ; the hybrid model optimized using the bionic optimization algorithm provides advantages over the independent KELM model, and the SSA-KELM model has the highest accuracy among hybrid models, with a root-mean-square error of 0.408–1.964, R 2 of 0.545–0.982, mean absolute error of 0.273–1.086, and Nash–Sutcliffe efficiency coefficient of 0.658–0.967. The top five factors extracted using the CART algorithm are recommended as inputs for constructing the SSA-KELM model for ET O estimation in arid and semiarid regions of China, and this model can also serve as a reference for ET O forecasting in similar regions.</description><identifier>ISSN: 1614-7499</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-022-23786-z</identifier><identifier>PMID: 36289123</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Algorithms ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Bionics ; China ; Earth and Environmental Science ; Ecotoxicology ; Environment ; Environmental Chemistry ; Environmental Health ; Research Article ; Temperature ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2023-02, Vol.30 (9), p.22396-22412</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-ebf53b4d8861b0ee954efd8401b0c2ec3bc84aba25e77d046d68cb896d67628a3</citedby><cites>FETCH-LOGICAL-c347t-ebf53b4d8861b0ee954efd8401b0c2ec3bc84aba25e77d046d68cb896d67628a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,36061</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36289123$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Long</creatorcontrib><creatorcontrib>Zhao, Xinbo</creatorcontrib><creatorcontrib>Li, Yuanze</creatorcontrib><creatorcontrib>Shi, Yi</creatorcontrib><creatorcontrib>Zhou, Hanmi</creatorcontrib><creatorcontrib>Li, Xiuzhen</creatorcontrib><creatorcontrib>Wang, Xiaodong</creatorcontrib><creatorcontrib>Xing, Xuguang</creatorcontrib><title>Applicability of hybrid bionic optimization models with kernel-based extreme learning machine algorithm for predicting daily reference evapotranspiration: a case study in arid and semiarid regions, China</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>The accurate prediction of daily reference crop evapotranspiration (ET O ) enables effective management decision-making for agricultural water resources; this is crucial for developing water-efficient agriculture. To improve the accuracy of ET O forecasts in data-deficient areas, this study uses a decision tree algorithm (classification and regression tree [CART]) to obtain the effects of various factors on ET O at typical stations in arid and semiarid regions of China. A combination of factors with considerable influence on the model was selected as the input for constructing a kernel-extreme-learning-machine (KELM) daily reference evapotranspiration prediction model, and three bionic optimization algorithms (i.e., sparrow search optimization algorithm, Harris Hawks optimization algorithm, and lion swarm optimization algorithm) were integrated to optimize KELM prediction model parameters and improve the accuracy of daily reference evapotranspiration prediction. The results indicate that temperature (maximum or minimum temperature) is the primary factor influencing ET O , and the range of importance is 0.399–0.554. RH and Ra are also key factors influencing ET O ; the hybrid model optimized using the bionic optimization algorithm provides advantages over the independent KELM model, and the SSA-KELM model has the highest accuracy among hybrid models, with a root-mean-square error of 0.408–1.964, R 2 of 0.545–0.982, mean absolute error of 0.273–1.086, and Nash–Sutcliffe efficiency coefficient of 0.658–0.967. The top five factors extracted using the CART algorithm are recommended as inputs for constructing the SSA-KELM model for ET O estimation in arid and semiarid regions of China, and this model can also serve as a reference for ET O forecasting in similar regions.</description><subject>Agriculture</subject><subject>Algorithms</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Bionics</subject><subject>China</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Research Article</subject><subject>Temperature</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1614-7499</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kctuFDEQRVsIRELgB1igWrJIE9v9ZheNwkOKlA2sLT-qZxzcdmO7Az2_yE_hmQmIFavylU_dcvkWxWtK3lFCuqtIadW0JWGsZFXXt-X-SXFOW1qXXT0MT_85nxUvYrwnhJGBdc-Ls6pl_UBZdV78up5na5SQxpq0gh9ht8pgNEjjnVHg52QmsxcpS5i8Rhvhh0k7-IbBoS2liKgBf6aAE4JFEZxxW5iE2hmHIOzWh4xPMPoAc0BtVDoAWhi7QsARAzqFgA9i9ikIF2cTjtPegwCV3SGmRa9gHIjDu4TTEHEyRxFwm8l4CZs8Tbwsno3CRnz1WC-Krx9uvmw-lbd3Hz9vrm9LVdVdKlGOTSVr3fctlQRxaGocdV-TrBRDVUnV10IK1mDXaVK3uu2V7Idcu_xvoroo3p585-C_LxgTn0xUaK1w6JfIWceGhlEyDBllJ1QFH2Nel8_BTCKsnBJ-CJGfQuQ5RH4Mke9z05tH_0VOqP-2_EktA9UJiPnKbTHwe78El3f-n-1vRMOvAw</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Zhao, Long</creator><creator>Zhao, Xinbo</creator><creator>Li, Yuanze</creator><creator>Shi, Yi</creator><creator>Zhou, Hanmi</creator><creator>Li, Xiuzhen</creator><creator>Wang, Xiaodong</creator><creator>Xing, Xuguang</creator><general>Springer Berlin Heidelberg</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230201</creationdate><title>Applicability of hybrid bionic optimization models with kernel-based extreme learning machine algorithm for predicting daily reference evapotranspiration: a case study in arid and semiarid regions, China</title><author>Zhao, Long ; Zhao, Xinbo ; Li, Yuanze ; Shi, Yi ; Zhou, Hanmi ; Li, Xiuzhen ; Wang, Xiaodong ; Xing, Xuguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-ebf53b4d8861b0ee954efd8401b0c2ec3bc84aba25e77d046d68cb896d67628a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agriculture</topic><topic>Algorithms</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Bionics</topic><topic>China</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Research Article</topic><topic>Temperature</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Long</creatorcontrib><creatorcontrib>Zhao, Xinbo</creatorcontrib><creatorcontrib>Li, Yuanze</creatorcontrib><creatorcontrib>Shi, Yi</creatorcontrib><creatorcontrib>Zhou, Hanmi</creatorcontrib><creatorcontrib>Li, Xiuzhen</creatorcontrib><creatorcontrib>Wang, Xiaodong</creatorcontrib><creatorcontrib>Xing, Xuguang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Long</au><au>Zhao, Xinbo</au><au>Li, Yuanze</au><au>Shi, Yi</au><au>Zhou, Hanmi</au><au>Li, Xiuzhen</au><au>Wang, Xiaodong</au><au>Xing, Xuguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applicability of hybrid bionic optimization models with kernel-based extreme learning machine algorithm for predicting daily reference evapotranspiration: a case study in arid and semiarid regions, China</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>30</volume><issue>9</issue><spage>22396</spage><epage>22412</epage><pages>22396-22412</pages><issn>1614-7499</issn><eissn>1614-7499</eissn><abstract>The accurate prediction of daily reference crop evapotranspiration (ET O ) enables effective management decision-making for agricultural water resources; this is crucial for developing water-efficient agriculture. To improve the accuracy of ET O forecasts in data-deficient areas, this study uses a decision tree algorithm (classification and regression tree [CART]) to obtain the effects of various factors on ET O at typical stations in arid and semiarid regions of China. A combination of factors with considerable influence on the model was selected as the input for constructing a kernel-extreme-learning-machine (KELM) daily reference evapotranspiration prediction model, and three bionic optimization algorithms (i.e., sparrow search optimization algorithm, Harris Hawks optimization algorithm, and lion swarm optimization algorithm) were integrated to optimize KELM prediction model parameters and improve the accuracy of daily reference evapotranspiration prediction. The results indicate that temperature (maximum or minimum temperature) is the primary factor influencing ET O , and the range of importance is 0.399–0.554. RH and Ra are also key factors influencing ET O ; the hybrid model optimized using the bionic optimization algorithm provides advantages over the independent KELM model, and the SSA-KELM model has the highest accuracy among hybrid models, with a root-mean-square error of 0.408–1.964, R 2 of 0.545–0.982, mean absolute error of 0.273–1.086, and Nash–Sutcliffe efficiency coefficient of 0.658–0.967. The top five factors extracted using the CART algorithm are recommended as inputs for constructing the SSA-KELM model for ET O estimation in arid and semiarid regions of China, and this model can also serve as a reference for ET O forecasting in similar regions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>36289123</pmid><doi>10.1007/s11356-022-23786-z</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1614-7499
ispartof Environmental science and pollution research international, 2023-02, Vol.30 (9), p.22396-22412
issn 1614-7499
1614-7499
language eng
recordid cdi_proquest_miscellaneous_2729521099
source ABI/INFORM Collection; Springer Link
subjects Agriculture
Algorithms
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Bionics
China
Earth and Environmental Science
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
Research Article
Temperature
Waste Water Technology
Water Management
Water Pollution Control
title Applicability of hybrid bionic optimization models with kernel-based extreme learning machine algorithm for predicting daily reference evapotranspiration: a case study in arid and semiarid regions, China
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applicability%20of%20hybrid%20bionic%20optimization%20models%20with%20kernel-based%20extreme%20learning%20machine%20algorithm%20for%20predicting%20daily%20reference%20evapotranspiration:%20a%20case%20study%20in%20arid%20and%20semiarid%20regions,%20China&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Zhao,%20Long&rft.date=2023-02-01&rft.volume=30&rft.issue=9&rft.spage=22396&rft.epage=22412&rft.pages=22396-22412&rft.issn=1614-7499&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-022-23786-z&rft_dat=%3Cproquest_cross%3E2729521099%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-ebf53b4d8861b0ee954efd8401b0c2ec3bc84aba25e77d046d68cb896d67628a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2729521099&rft_id=info:pmid/36289123&rfr_iscdi=true