Loading…

Oxidation resistant high conductivity copper films

The properties of thin films of Cu-doped with different percentages of Mg were investigated. It was found that as-deposited films of Cu (2 at. % Mg) oxidize orders of magnitude more slowly than do those of pure Cu. More importantly, when Cu(2 at. % Mg) films are annealed in Ar at 400 °C for 30 min,...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 1994-05, Vol.64 (21), p.2897-2899
Main Authors: Ding, P. J., Lanford, W. A., Hymes, S., Murarka, S. P.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-71b5df01101519fde6064cd33003894a9aa53fd7d1058ed57832feeaa2d224ce3
cites cdi_FETCH-LOGICAL-c322t-71b5df01101519fde6064cd33003894a9aa53fd7d1058ed57832feeaa2d224ce3
container_end_page 2899
container_issue 21
container_start_page 2897
container_title Applied physics letters
container_volume 64
creator Ding, P. J.
Lanford, W. A.
Hymes, S.
Murarka, S. P.
description The properties of thin films of Cu-doped with different percentages of Mg were investigated. It was found that as-deposited films of Cu (2 at. % Mg) oxidize orders of magnitude more slowly than do those of pure Cu. More importantly, when Cu(2 at. % Mg) films are annealed in Ar at 400 °C for 30 min, a thin protective layer of magnesium oxide forms on the surface and completely stops further oxidation. This annealing step also reduces the resistivity of films to the value essentially the same as that of pure sputtered copper films. Films of Cu (2 at. % Mg) also adhere to SiO2 much better than do films of pure copper. Furthermore, annealing studies show that this material remains microscopically smooth and shows no diffusion into SiO2 at temperatures up to 700 °C.
doi_str_mv 10.1063/1.111408
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27302138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27302138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-71b5df01101519fde6064cd33003894a9aa53fd7d1058ed57832feeaa2d224ce3</originalsourceid><addsrcrecordid>eNotkMlKBDEURYMoWLaCn1ArcVPte3mVGpbSOEFDb3QdYgY7UpNJWuy_t6RcXQ5cLpfD2DXCGqGiO1wjYgnNCcsQ6rogxOaUZQBARdUKPGcXMX7OKDhRxvjuxxuV_DjkwUYfkxpSvvcf-1yPgzno5L99Os4wTTbkznd9vGRnTnXRXv3nir09Prxunovt7ullc78tNHGeihrfhXGACCiwdcZWUJXaEM1PmrZUrVKCnKkNgmisEXVD3FmrFDecl9rSit0su1MYvw42Jtn7qG3XqcGOhyh5TcCRmrl4uxR1GGMM1skp-F6Fo0SQf1IkykUK_QKBKVMK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27302138</pqid></control><display><type>article</type><title>Oxidation resistant high conductivity copper films</title><source>AIP Digital Archive</source><creator>Ding, P. J. ; Lanford, W. A. ; Hymes, S. ; Murarka, S. P.</creator><creatorcontrib>Ding, P. J. ; Lanford, W. A. ; Hymes, S. ; Murarka, S. P.</creatorcontrib><description>The properties of thin films of Cu-doped with different percentages of Mg were investigated. It was found that as-deposited films of Cu (2 at. % Mg) oxidize orders of magnitude more slowly than do those of pure Cu. More importantly, when Cu(2 at. % Mg) films are annealed in Ar at 400 °C for 30 min, a thin protective layer of magnesium oxide forms on the surface and completely stops further oxidation. This annealing step also reduces the resistivity of films to the value essentially the same as that of pure sputtered copper films. Films of Cu (2 at. % Mg) also adhere to SiO2 much better than do films of pure copper. Furthermore, annealing studies show that this material remains microscopically smooth and shows no diffusion into SiO2 at temperatures up to 700 °C.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.111408</identifier><language>eng</language><ispartof>Applied physics letters, 1994-05, Vol.64 (21), p.2897-2899</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-71b5df01101519fde6064cd33003894a9aa53fd7d1058ed57832feeaa2d224ce3</citedby><cites>FETCH-LOGICAL-c322t-71b5df01101519fde6064cd33003894a9aa53fd7d1058ed57832feeaa2d224ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ding, P. J.</creatorcontrib><creatorcontrib>Lanford, W. A.</creatorcontrib><creatorcontrib>Hymes, S.</creatorcontrib><creatorcontrib>Murarka, S. P.</creatorcontrib><title>Oxidation resistant high conductivity copper films</title><title>Applied physics letters</title><description>The properties of thin films of Cu-doped with different percentages of Mg were investigated. It was found that as-deposited films of Cu (2 at. % Mg) oxidize orders of magnitude more slowly than do those of pure Cu. More importantly, when Cu(2 at. % Mg) films are annealed in Ar at 400 °C for 30 min, a thin protective layer of magnesium oxide forms on the surface and completely stops further oxidation. This annealing step also reduces the resistivity of films to the value essentially the same as that of pure sputtered copper films. Films of Cu (2 at. % Mg) also adhere to SiO2 much better than do films of pure copper. Furthermore, annealing studies show that this material remains microscopically smooth and shows no diffusion into SiO2 at temperatures up to 700 °C.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNotkMlKBDEURYMoWLaCn1ArcVPte3mVGpbSOEFDb3QdYgY7UpNJWuy_t6RcXQ5cLpfD2DXCGqGiO1wjYgnNCcsQ6rogxOaUZQBARdUKPGcXMX7OKDhRxvjuxxuV_DjkwUYfkxpSvvcf-1yPgzno5L99Os4wTTbkznd9vGRnTnXRXv3nir09Prxunovt7ullc78tNHGeihrfhXGACCiwdcZWUJXaEM1PmrZUrVKCnKkNgmisEXVD3FmrFDecl9rSit0su1MYvw42Jtn7qG3XqcGOhyh5TcCRmrl4uxR1GGMM1skp-F6Fo0SQf1IkykUK_QKBKVMK</recordid><startdate>19940523</startdate><enddate>19940523</enddate><creator>Ding, P. J.</creator><creator>Lanford, W. A.</creator><creator>Hymes, S.</creator><creator>Murarka, S. P.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>19940523</creationdate><title>Oxidation resistant high conductivity copper films</title><author>Ding, P. J. ; Lanford, W. A. ; Hymes, S. ; Murarka, S. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-71b5df01101519fde6064cd33003894a9aa53fd7d1058ed57832feeaa2d224ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, P. J.</creatorcontrib><creatorcontrib>Lanford, W. A.</creatorcontrib><creatorcontrib>Hymes, S.</creatorcontrib><creatorcontrib>Murarka, S. P.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, P. J.</au><au>Lanford, W. A.</au><au>Hymes, S.</au><au>Murarka, S. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidation resistant high conductivity copper films</atitle><jtitle>Applied physics letters</jtitle><date>1994-05-23</date><risdate>1994</risdate><volume>64</volume><issue>21</issue><spage>2897</spage><epage>2899</epage><pages>2897-2899</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>The properties of thin films of Cu-doped with different percentages of Mg were investigated. It was found that as-deposited films of Cu (2 at. % Mg) oxidize orders of magnitude more slowly than do those of pure Cu. More importantly, when Cu(2 at. % Mg) films are annealed in Ar at 400 °C for 30 min, a thin protective layer of magnesium oxide forms on the surface and completely stops further oxidation. This annealing step also reduces the resistivity of films to the value essentially the same as that of pure sputtered copper films. Films of Cu (2 at. % Mg) also adhere to SiO2 much better than do films of pure copper. Furthermore, annealing studies show that this material remains microscopically smooth and shows no diffusion into SiO2 at temperatures up to 700 °C.</abstract><doi>10.1063/1.111408</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 1994-05, Vol.64 (21), p.2897-2899
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_miscellaneous_27302138
source AIP Digital Archive
title Oxidation resistant high conductivity copper films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A33%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidation%20resistant%20high%20conductivity%20copper%20films&rft.jtitle=Applied%20physics%20letters&rft.au=Ding,%20P.%20J.&rft.date=1994-05-23&rft.volume=64&rft.issue=21&rft.spage=2897&rft.epage=2899&rft.pages=2897-2899&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.111408&rft_dat=%3Cproquest_cross%3E27302138%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-71b5df01101519fde6064cd33003894a9aa53fd7d1058ed57832feeaa2d224ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27302138&rft_id=info:pmid/&rfr_iscdi=true