Loading…

Dual-crosslinked bioprosthetic heart valves prepared by glutaraldehyde crosslinked pericardium and poly-2-hydroxyethyl methacrylate exhibited improved antithrombogenicity and anticalcification properties

Bioprosthetic heart valves (BHVs) have been widely used due to the revolutionary transcatheter aortic valve replacement (TAVR) techniques but suffer from a limited lifespan. Previous modification methods of BHVs mainly rely on glutaraldehyde precrosslinking and subsequent modification. In this study...

Full description

Saved in:
Bibliographic Details
Published in:Acta biomaterialia 2022-12, Vol.154, p.244-258
Main Authors: Huang, Xueyu, Zheng, Cheng, Ding, Kailei, Zhang, Shumang, Lei, Yang, Wei, Qingrong, Yang, Li, Wang, Yunbing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bioprosthetic heart valves (BHVs) have been widely used due to the revolutionary transcatheter aortic valve replacement (TAVR) techniques but suffer from a limited lifespan. Previous modification methods of BHVs mainly rely on glutaraldehyde precrosslinking and subsequent modification. In this study, we have engineered a Poly-2-Hydroxyethyl methacrylate (pHEMA) coated BHV based on co-crosslinking and co-polymerization strategies. Our BHV overcomes previous limitations of glutaraldehyde prefixation by introducing free molecules before crosslinking to achieve the crosslinking and allyl moiety immobilization simultaneously. Decellularized porcine pericardium and 2-Amino-4-pentenoic acid (APA) are firstly co-crosslinked by glutaraldehyde to obtain alkenylated porcine pericardium (APA-PP), then APA-PP is copolymerized with hydrophilic monomer 2-Hydroxyethyl methacrylate (HEMA) to prepare pHEMA grafted porcine pericardium (HEMA-PP). Compared with traditional glutaraldehyde crosslinked pericardium (GA), HEMA-PP exhibits decreased cytotoxicity and significantly increased endothelialial cells proliferation (7-folds higher than GA after 3-day incubation). In vitro and ex vivo hemocompatibility studies demonstrate the superiority of HEMA-PP in anti-thrombogenicity, where the platelet adhesion decreased by levels of approximately 89% compared to GA. Moreover, HEMA-PP maintains structurally stable with a low level of calcification in the subcutaneous model. The hydrodynamic performance and durability are proven to meet the requirements of ISO 5840-3. Altogether, HEMA-PP may have the potential for future clinical application. Currently, bioprosthetic heart valves (BHVs) have drawbacks including cytotoxicity, calcification and thrombosis, which would accelerate structural valvular degeneration and limit the service life of BHVs. We developed a new modification strategy that could simultaneously improve the biocompatibility, anti-calcification and anti-thrombotic properties of BHVs. Moreover, the appropriate durability and hydrodynamic property demonstrated the potential of our strategy for clinical application. This work will potentially prolong the service life of BHVs and provide new insight for the modification of BHVs. [Display omitted]
ISSN:1742-7061
1878-7568
DOI:10.1016/j.actbio.2022.10.036