Loading…

Formation and evolution of C–C, C–O, CO and C–N bonds in chemical reactions of prebiotic interest

A series of prebiotic chemical reactions yielding the precursor building blocks of amino acids, proteins and carbohydrates, starting solely from HCN and water is studied here. We closely follow the formation and evolution of the pivotal C–C, C–O, CO, and C–N bonds, which dictate the chemistry of th...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances 2022-10, Vol.12 (44), p.28804-28817
Main Authors: Arias, Alejandro, Gómez, Sara, Rojas-Valencia, Natalia, Núñez-Zarur, Francisco, Cappelli, Chiara, Murillo-López, Juliana A., Restrepo, Albeiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c258t-8ff9df132f40df9a99dc42bfd428f8009f4976b182f91f701d267b641410b4503
cites cdi_FETCH-LOGICAL-c258t-8ff9df132f40df9a99dc42bfd428f8009f4976b182f91f701d267b641410b4503
container_end_page 28817
container_issue 44
container_start_page 28804
container_title RSC advances
container_volume 12
creator Arias, Alejandro
Gómez, Sara
Rojas-Valencia, Natalia
Núñez-Zarur, Francisco
Cappelli, Chiara
Murillo-López, Juliana A.
Restrepo, Albeiro
description A series of prebiotic chemical reactions yielding the precursor building blocks of amino acids, proteins and carbohydrates, starting solely from HCN and water is studied here. We closely follow the formation and evolution of the pivotal C–C, C–O, CO, and C–N bonds, which dictate the chemistry of the molecules of life. In many cases, formation of these bonds is set in motion by proton transfers in which individual water molecules act as catalysts so that water atoms end up in the products. Our results indicate that the prebiotic formation of carbon dioxide, formaldehyde, formic acid, formaldimine, glycolaldehyde, glycine, glycolonitrile, and oxazole derivatives, among others, are best described as highly nonsynchronous concerted single step processes. Nonetheless, for all reactions involving double proton transfer, the formation and breaking of O–H bonds around a particular O atom occur in a synchronous fashion, apparently independently from other primitive processes. For the most part, the first process to initiate seems to be the double proton transfer in the reactions where they are present, then bond breaking/formation around the reactive carbon in the carbonyl group and finally rupture of the C–N bonds in the appropriate cases, which are the most reluctant to break. Remarkably, within the limitations of our non-dynamical computational model, the wide ranges of temperature and pressure in which these reactions occur, downplay the problematic determination of the exact constraints on the early Earth.
doi_str_mv 10.1039/d2ra06000k
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2731427853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726316629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-8ff9df132f40df9a99dc42bfd428f8009f4976b182f91f701d267b641410b4503</originalsourceid><addsrcrecordid>eNpdkMFKxDAQhoMouKxefIKCFxGrkzRNm-NSXRUXF0TPJU0T7No2a9IK3tZn8A19AJ_BtOtBPP0zw_fPDD9CRxjOMUT8oiRWAAOAlx00IUBZSIDx3T_1Pjp0buUJYDEmDE_Qam5sI7rKtIFoy0C9mbofO6OD7GvzmZ2NsvTyvflYjtAwuA8K05YuqNpAPqumkqIOrBJy8LrBvLaqqExXSY90yirXHaA9LWqnDn91ip7mV4_ZTbhYXt9ms0UoSZx2Yao1LzWOiKZQai44LyUlhS4pSXUKwDXlCStwSjTHOgFcEpYUjGKKoaAxRFN0st27tua194fzpnJS1bVoleldTpIIU5KkceTR43_oyvS29d95irAIM0a4p063lLTGOat0vrZVI-x7jiEfks8vycNsTP4u-gFcDHbh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726316629</pqid></control><display><type>article</type><title>Formation and evolution of C–C, C–O, CO and C–N bonds in chemical reactions of prebiotic interest</title><source>PubMed Central(OpenAccess)</source><creator>Arias, Alejandro ; Gómez, Sara ; Rojas-Valencia, Natalia ; Núñez-Zarur, Francisco ; Cappelli, Chiara ; Murillo-López, Juliana A. ; Restrepo, Albeiro</creator><creatorcontrib>Arias, Alejandro ; Gómez, Sara ; Rojas-Valencia, Natalia ; Núñez-Zarur, Francisco ; Cappelli, Chiara ; Murillo-López, Juliana A. ; Restrepo, Albeiro</creatorcontrib><description>A series of prebiotic chemical reactions yielding the precursor building blocks of amino acids, proteins and carbohydrates, starting solely from HCN and water is studied here. We closely follow the formation and evolution of the pivotal C–C, C–O, CO, and C–N bonds, which dictate the chemistry of the molecules of life. In many cases, formation of these bonds is set in motion by proton transfers in which individual water molecules act as catalysts so that water atoms end up in the products. Our results indicate that the prebiotic formation of carbon dioxide, formaldehyde, formic acid, formaldimine, glycolaldehyde, glycine, glycolonitrile, and oxazole derivatives, among others, are best described as highly nonsynchronous concerted single step processes. Nonetheless, for all reactions involving double proton transfer, the formation and breaking of O–H bonds around a particular O atom occur in a synchronous fashion, apparently independently from other primitive processes. For the most part, the first process to initiate seems to be the double proton transfer in the reactions where they are present, then bond breaking/formation around the reactive carbon in the carbonyl group and finally rupture of the C–N bonds in the appropriate cases, which are the most reluctant to break. Remarkably, within the limitations of our non-dynamical computational model, the wide ranges of temperature and pressure in which these reactions occur, downplay the problematic determination of the exact constraints on the early Earth.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d2ra06000k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Amino acids ; Carbohydrates ; Carbon dioxide ; Carbonyl groups ; Carbonyls ; Chemical bonds ; Chemical reactions ; Evolution ; Formic acid ; Glycine ; Oxazole ; Prebiotics ; Protons ; Water chemistry</subject><ispartof>RSC advances, 2022-10, Vol.12 (44), p.28804-28817</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-8ff9df132f40df9a99dc42bfd428f8009f4976b182f91f701d267b641410b4503</citedby><cites>FETCH-LOGICAL-c258t-8ff9df132f40df9a99dc42bfd428f8009f4976b182f91f701d267b641410b4503</cites><orcidid>0000-0002-9244-9328 ; 0000-0002-7380-3010 ; 0000-0002-5430-9228 ; 0000-0002-4872-4505 ; 0000-0002-3351-4652 ; 0000-0003-1088-3305 ; 0000-0002-7866-7791</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Arias, Alejandro</creatorcontrib><creatorcontrib>Gómez, Sara</creatorcontrib><creatorcontrib>Rojas-Valencia, Natalia</creatorcontrib><creatorcontrib>Núñez-Zarur, Francisco</creatorcontrib><creatorcontrib>Cappelli, Chiara</creatorcontrib><creatorcontrib>Murillo-López, Juliana A.</creatorcontrib><creatorcontrib>Restrepo, Albeiro</creatorcontrib><title>Formation and evolution of C–C, C–O, CO and C–N bonds in chemical reactions of prebiotic interest</title><title>RSC advances</title><description>A series of prebiotic chemical reactions yielding the precursor building blocks of amino acids, proteins and carbohydrates, starting solely from HCN and water is studied here. We closely follow the formation and evolution of the pivotal C–C, C–O, CO, and C–N bonds, which dictate the chemistry of the molecules of life. In many cases, formation of these bonds is set in motion by proton transfers in which individual water molecules act as catalysts so that water atoms end up in the products. Our results indicate that the prebiotic formation of carbon dioxide, formaldehyde, formic acid, formaldimine, glycolaldehyde, glycine, glycolonitrile, and oxazole derivatives, among others, are best described as highly nonsynchronous concerted single step processes. Nonetheless, for all reactions involving double proton transfer, the formation and breaking of O–H bonds around a particular O atom occur in a synchronous fashion, apparently independently from other primitive processes. For the most part, the first process to initiate seems to be the double proton transfer in the reactions where they are present, then bond breaking/formation around the reactive carbon in the carbonyl group and finally rupture of the C–N bonds in the appropriate cases, which are the most reluctant to break. Remarkably, within the limitations of our non-dynamical computational model, the wide ranges of temperature and pressure in which these reactions occur, downplay the problematic determination of the exact constraints on the early Earth.</description><subject>Amino acids</subject><subject>Carbohydrates</subject><subject>Carbon dioxide</subject><subject>Carbonyl groups</subject><subject>Carbonyls</subject><subject>Chemical bonds</subject><subject>Chemical reactions</subject><subject>Evolution</subject><subject>Formic acid</subject><subject>Glycine</subject><subject>Oxazole</subject><subject>Prebiotics</subject><subject>Protons</subject><subject>Water chemistry</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkMFKxDAQhoMouKxefIKCFxGrkzRNm-NSXRUXF0TPJU0T7No2a9IK3tZn8A19AJ_BtOtBPP0zw_fPDD9CRxjOMUT8oiRWAAOAlx00IUBZSIDx3T_1Pjp0buUJYDEmDE_Qam5sI7rKtIFoy0C9mbofO6OD7GvzmZ2NsvTyvflYjtAwuA8K05YuqNpAPqumkqIOrBJy8LrBvLaqqExXSY90yirXHaA9LWqnDn91ip7mV4_ZTbhYXt9ms0UoSZx2Yao1LzWOiKZQai44LyUlhS4pSXUKwDXlCStwSjTHOgFcEpYUjGKKoaAxRFN0st27tua194fzpnJS1bVoleldTpIIU5KkceTR43_oyvS29d95irAIM0a4p063lLTGOat0vrZVI-x7jiEfks8vycNsTP4u-gFcDHbh</recordid><startdate>20221004</startdate><enddate>20221004</enddate><creator>Arias, Alejandro</creator><creator>Gómez, Sara</creator><creator>Rojas-Valencia, Natalia</creator><creator>Núñez-Zarur, Francisco</creator><creator>Cappelli, Chiara</creator><creator>Murillo-López, Juliana A.</creator><creator>Restrepo, Albeiro</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9244-9328</orcidid><orcidid>https://orcid.org/0000-0002-7380-3010</orcidid><orcidid>https://orcid.org/0000-0002-5430-9228</orcidid><orcidid>https://orcid.org/0000-0002-4872-4505</orcidid><orcidid>https://orcid.org/0000-0002-3351-4652</orcidid><orcidid>https://orcid.org/0000-0003-1088-3305</orcidid><orcidid>https://orcid.org/0000-0002-7866-7791</orcidid></search><sort><creationdate>20221004</creationdate><title>Formation and evolution of C–C, C–O, CO and C–N bonds in chemical reactions of prebiotic interest</title><author>Arias, Alejandro ; Gómez, Sara ; Rojas-Valencia, Natalia ; Núñez-Zarur, Francisco ; Cappelli, Chiara ; Murillo-López, Juliana A. ; Restrepo, Albeiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-8ff9df132f40df9a99dc42bfd428f8009f4976b182f91f701d267b641410b4503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino acids</topic><topic>Carbohydrates</topic><topic>Carbon dioxide</topic><topic>Carbonyl groups</topic><topic>Carbonyls</topic><topic>Chemical bonds</topic><topic>Chemical reactions</topic><topic>Evolution</topic><topic>Formic acid</topic><topic>Glycine</topic><topic>Oxazole</topic><topic>Prebiotics</topic><topic>Protons</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arias, Alejandro</creatorcontrib><creatorcontrib>Gómez, Sara</creatorcontrib><creatorcontrib>Rojas-Valencia, Natalia</creatorcontrib><creatorcontrib>Núñez-Zarur, Francisco</creatorcontrib><creatorcontrib>Cappelli, Chiara</creatorcontrib><creatorcontrib>Murillo-López, Juliana A.</creatorcontrib><creatorcontrib>Restrepo, Albeiro</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arias, Alejandro</au><au>Gómez, Sara</au><au>Rojas-Valencia, Natalia</au><au>Núñez-Zarur, Francisco</au><au>Cappelli, Chiara</au><au>Murillo-López, Juliana A.</au><au>Restrepo, Albeiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation and evolution of C–C, C–O, CO and C–N bonds in chemical reactions of prebiotic interest</atitle><jtitle>RSC advances</jtitle><date>2022-10-04</date><risdate>2022</risdate><volume>12</volume><issue>44</issue><spage>28804</spage><epage>28817</epage><pages>28804-28817</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>A series of prebiotic chemical reactions yielding the precursor building blocks of amino acids, proteins and carbohydrates, starting solely from HCN and water is studied here. We closely follow the formation and evolution of the pivotal C–C, C–O, CO, and C–N bonds, which dictate the chemistry of the molecules of life. In many cases, formation of these bonds is set in motion by proton transfers in which individual water molecules act as catalysts so that water atoms end up in the products. Our results indicate that the prebiotic formation of carbon dioxide, formaldehyde, formic acid, formaldimine, glycolaldehyde, glycine, glycolonitrile, and oxazole derivatives, among others, are best described as highly nonsynchronous concerted single step processes. Nonetheless, for all reactions involving double proton transfer, the formation and breaking of O–H bonds around a particular O atom occur in a synchronous fashion, apparently independently from other primitive processes. For the most part, the first process to initiate seems to be the double proton transfer in the reactions where they are present, then bond breaking/formation around the reactive carbon in the carbonyl group and finally rupture of the C–N bonds in the appropriate cases, which are the most reluctant to break. Remarkably, within the limitations of our non-dynamical computational model, the wide ranges of temperature and pressure in which these reactions occur, downplay the problematic determination of the exact constraints on the early Earth.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ra06000k</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9244-9328</orcidid><orcidid>https://orcid.org/0000-0002-7380-3010</orcidid><orcidid>https://orcid.org/0000-0002-5430-9228</orcidid><orcidid>https://orcid.org/0000-0002-4872-4505</orcidid><orcidid>https://orcid.org/0000-0002-3351-4652</orcidid><orcidid>https://orcid.org/0000-0003-1088-3305</orcidid><orcidid>https://orcid.org/0000-0002-7866-7791</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2022-10, Vol.12 (44), p.28804-28817
issn 2046-2069
2046-2069
language eng
recordid cdi_proquest_miscellaneous_2731427853
source PubMed Central(OpenAccess)
subjects Amino acids
Carbohydrates
Carbon dioxide
Carbonyl groups
Carbonyls
Chemical bonds
Chemical reactions
Evolution
Formic acid
Glycine
Oxazole
Prebiotics
Protons
Water chemistry
title Formation and evolution of C–C, C–O, CO and C–N bonds in chemical reactions of prebiotic interest
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20and%20evolution%20of%20C%E2%80%93C,%20C%E2%80%93O,%20C%EE%80%81O%20and%20C%E2%80%93N%20bonds%20in%20chemical%20reactions%20of%20prebiotic%20interest&rft.jtitle=RSC%20advances&rft.au=Arias,%20Alejandro&rft.date=2022-10-04&rft.volume=12&rft.issue=44&rft.spage=28804&rft.epage=28817&rft.pages=28804-28817&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d2ra06000k&rft_dat=%3Cproquest_cross%3E2726316629%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c258t-8ff9df132f40df9a99dc42bfd428f8009f4976b182f91f701d267b641410b4503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2726316629&rft_id=info:pmid/&rfr_iscdi=true