Loading…
Predictive Outcomes of Deep Learning Measurement of the Anterior Glottic Angle in Bilateral Vocal Fold Immobility
Objective (1) To compare maximum glottic opening angle (anterior glottic angle, AGA) in patients with bilateral vocal fold immobility (BVFI), unilateral vocal fold immobility (UVFI) and normal larynges (NL), and (2) to correlate maximum AGA with patient‐reported outcome measures. Methods Patients wi...
Saved in:
Published in: | The Laryngoscope 2023-09, Vol.133 (9), p.2285-2291 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3573-9e2ad435c477179c6fd91f2f5263faf9a61e72e14323b54f86d38e097ebc36873 |
---|---|
cites | cdi_FETCH-LOGICAL-c3573-9e2ad435c477179c6fd91f2f5263faf9a61e72e14323b54f86d38e097ebc36873 |
container_end_page | 2291 |
container_issue | 9 |
container_start_page | 2285 |
container_title | The Laryngoscope |
container_volume | 133 |
creator | DeVore, Elliana Kirsh Adamian, Nat Jowett, Nate Wang, Tiffany Song, Phillip Franco, Ramon Naunheim, Matthew Roberts |
description | Objective
(1) To compare maximum glottic opening angle (anterior glottic angle, AGA) in patients with bilateral vocal fold immobility (BVFI), unilateral vocal fold immobility (UVFI) and normal larynges (NL), and (2) to correlate maximum AGA with patient‐reported outcome measures.
Methods
Patients wisth BVFI, UVFI, and NL were retrospectively studied. An open‐source deep learning‐based computer vision tool for vocal fold tracking was used to analyze videolaryngoscopy. Minimum and maximum AGA were calculated and correlated with three patient‐reported outcomes measures.
Results
Two hundred and fourteen patients were included. Mean maximum AGA was 29.91° (14.40° SD), 42.59° (12.37° SD), and 57.08° (11.14° SD) in BVFI (N = 70), UVFI (N = 70), and NL (N = 72) groups, respectively (p |
doi_str_mv | 10.1002/lary.30473 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2731718043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848253197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3573-9e2ad435c477179c6fd91f2f5263faf9a61e72e14323b54f86d38e097ebc36873</originalsourceid><addsrcrecordid>eNp9kc9rFDEYhoNY7LZ68Q-QgBcpTE3yzUxmjmu1P2BLRVT0FLKZLzUlM9kmGWX_e7Nu7cGDlwTyPjyE9yXkJWennDHx1uu4PQVWS3hCFrwBXtV93zwlixJC1TXi2yE5SumOMS6hYc_IIbQgWs7Egtx_jDg4k91PpDdzNmHERIOl7xE3dIU6Tm66pdeo0xxxxCnvwvwD6XLKGF2I9MKHnJ0pD7ceqZvoO-d1ybSnX4Mp53nwA70ax7B23uXtc3JgtU_44uE-Jl_OP3w-u6xWNxdXZ8tVZaCRUPUo9FBDY2opuexNa4eeW2Eb0YLVttctRymQ1yBg3dS2awfokPUS1wbaTsIxebP3bmK4nzFlNbpk0Hs9YZiTEhK45B2roaCv_0Hvwhyn8jsluroTpdJ-JzzZUyaGlCJatYluLN0rztRuCLUbQv0ZosCvHpTzesThEf3bfAH4HvjlPG7_o1Kr5afve-lvTIGSnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848253197</pqid></control><display><type>article</type><title>Predictive Outcomes of Deep Learning Measurement of the Anterior Glottic Angle in Bilateral Vocal Fold Immobility</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>DeVore, Elliana Kirsh ; Adamian, Nat ; Jowett, Nate ; Wang, Tiffany ; Song, Phillip ; Franco, Ramon ; Naunheim, Matthew Roberts</creator><creatorcontrib>DeVore, Elliana Kirsh ; Adamian, Nat ; Jowett, Nate ; Wang, Tiffany ; Song, Phillip ; Franco, Ramon ; Naunheim, Matthew Roberts</creatorcontrib><description>Objective
(1) To compare maximum glottic opening angle (anterior glottic angle, AGA) in patients with bilateral vocal fold immobility (BVFI), unilateral vocal fold immobility (UVFI) and normal larynges (NL), and (2) to correlate maximum AGA with patient‐reported outcome measures.
Methods
Patients wisth BVFI, UVFI, and NL were retrospectively studied. An open‐source deep learning‐based computer vision tool for vocal fold tracking was used to analyze videolaryngoscopy. Minimum and maximum AGA were calculated and correlated with three patient‐reported outcomes measures.
Results
Two hundred and fourteen patients were included. Mean maximum AGA was 29.91° (14.40° SD), 42.59° (12.37° SD), and 57.08° (11.14° SD) in BVFI (N = 70), UVFI (N = 70), and NL (N = 72) groups, respectively (p < 0.001). Patients requiring operative airway intervention for BVFI had an average maximum AGA of 24.94° (10.66° SD), statistically different from those not requiring intervention (p = 0.0001). There was moderate negative correlation between Dyspnea Index scores and AGA (Spearman r = −0.345, p = 0.0003). Maximum AGA demonstrated high discriminatory ability for BVFI diagnosis (AUC 0.92, 95% CI 0.81–0.97, p < 0.001) and moderate ability to predict need for operative airway intervention (AUC 0.77, 95% CI 0.64–0.89, p < 0.001).
Conclusions
A computer vision tool for quantitative assessment of the AGA from videolaryngoscopy demonstrated ability to discriminate between patients with BVFI, UVFI, and normal controls and predict need for operative airway intervention. This tool may be useful for assessment of other neurological laryngeal conditions and may help guide decision‐making in laryngeal surgery.
Level of Evidence
III Laryngoscope, 133:2285–2291, 2023
The objective of this research was to apply a computer vision tool for assessment of anterior glottic angle (AGA) in patients with bilateral vocal fold immobility (BVFI), and to compare the AGA in BVFI with that of unilateral vocal fold immobility (UVFI) and normal larynges (NL) as measured by the algorithm. The computer vision tool was able to quantitatively assessof the AGA from videolaryngoscopy, demonstrating ability to discriminate between patients with BVFI, UVFI, and normal controls, as well as to predict need for operative airway intervention. This tool may be useful for assessment of other neurological laryngeal conditions and may help guide decision‐making in laryngeal surgery.</description><identifier>ISSN: 0023-852X</identifier><identifier>EISSN: 1531-4995</identifier><identifier>DOI: 10.1002/lary.30473</identifier><identifier>PMID: 36326102</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>artificial intelligence ; Computer vision ; Deep learning ; Laryngoscopy ; Patients ; patient‐reported outcome measures ; vocal cords</subject><ispartof>The Laryngoscope, 2023-09, Vol.133 (9), p.2285-2291</ispartof><rights>2022 The American Laryngological, Rhinological and Otological Society, Inc.</rights><rights>2023 The American Laryngological, Rhinological and Otological Society, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3573-9e2ad435c477179c6fd91f2f5263faf9a61e72e14323b54f86d38e097ebc36873</citedby><cites>FETCH-LOGICAL-c3573-9e2ad435c477179c6fd91f2f5263faf9a61e72e14323b54f86d38e097ebc36873</cites><orcidid>0000-0002-5242-0264 ; 0000-0003-0206-5441 ; 0000-0002-7034-9238 ; 0000-0002-4549-6017 ; 0000-0003-2056-4658 ; 0000-0002-3927-3984</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36326102$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>DeVore, Elliana Kirsh</creatorcontrib><creatorcontrib>Adamian, Nat</creatorcontrib><creatorcontrib>Jowett, Nate</creatorcontrib><creatorcontrib>Wang, Tiffany</creatorcontrib><creatorcontrib>Song, Phillip</creatorcontrib><creatorcontrib>Franco, Ramon</creatorcontrib><creatorcontrib>Naunheim, Matthew Roberts</creatorcontrib><title>Predictive Outcomes of Deep Learning Measurement of the Anterior Glottic Angle in Bilateral Vocal Fold Immobility</title><title>The Laryngoscope</title><addtitle>Laryngoscope</addtitle><description>Objective
(1) To compare maximum glottic opening angle (anterior glottic angle, AGA) in patients with bilateral vocal fold immobility (BVFI), unilateral vocal fold immobility (UVFI) and normal larynges (NL), and (2) to correlate maximum AGA with patient‐reported outcome measures.
Methods
Patients wisth BVFI, UVFI, and NL were retrospectively studied. An open‐source deep learning‐based computer vision tool for vocal fold tracking was used to analyze videolaryngoscopy. Minimum and maximum AGA were calculated and correlated with three patient‐reported outcomes measures.
Results
Two hundred and fourteen patients were included. Mean maximum AGA was 29.91° (14.40° SD), 42.59° (12.37° SD), and 57.08° (11.14° SD) in BVFI (N = 70), UVFI (N = 70), and NL (N = 72) groups, respectively (p < 0.001). Patients requiring operative airway intervention for BVFI had an average maximum AGA of 24.94° (10.66° SD), statistically different from those not requiring intervention (p = 0.0001). There was moderate negative correlation between Dyspnea Index scores and AGA (Spearman r = −0.345, p = 0.0003). Maximum AGA demonstrated high discriminatory ability for BVFI diagnosis (AUC 0.92, 95% CI 0.81–0.97, p < 0.001) and moderate ability to predict need for operative airway intervention (AUC 0.77, 95% CI 0.64–0.89, p < 0.001).
Conclusions
A computer vision tool for quantitative assessment of the AGA from videolaryngoscopy demonstrated ability to discriminate between patients with BVFI, UVFI, and normal controls and predict need for operative airway intervention. This tool may be useful for assessment of other neurological laryngeal conditions and may help guide decision‐making in laryngeal surgery.
Level of Evidence
III Laryngoscope, 133:2285–2291, 2023
The objective of this research was to apply a computer vision tool for assessment of anterior glottic angle (AGA) in patients with bilateral vocal fold immobility (BVFI), and to compare the AGA in BVFI with that of unilateral vocal fold immobility (UVFI) and normal larynges (NL) as measured by the algorithm. The computer vision tool was able to quantitatively assessof the AGA from videolaryngoscopy, demonstrating ability to discriminate between patients with BVFI, UVFI, and normal controls, as well as to predict need for operative airway intervention. This tool may be useful for assessment of other neurological laryngeal conditions and may help guide decision‐making in laryngeal surgery.</description><subject>artificial intelligence</subject><subject>Computer vision</subject><subject>Deep learning</subject><subject>Laryngoscopy</subject><subject>Patients</subject><subject>patient‐reported outcome measures</subject><subject>vocal cords</subject><issn>0023-852X</issn><issn>1531-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc9rFDEYhoNY7LZ68Q-QgBcpTE3yzUxmjmu1P2BLRVT0FLKZLzUlM9kmGWX_e7Nu7cGDlwTyPjyE9yXkJWennDHx1uu4PQVWS3hCFrwBXtV93zwlixJC1TXi2yE5SumOMS6hYc_IIbQgWs7Egtx_jDg4k91PpDdzNmHERIOl7xE3dIU6Tm66pdeo0xxxxCnvwvwD6XLKGF2I9MKHnJ0pD7ceqZvoO-d1ybSnX4Mp53nwA70ax7B23uXtc3JgtU_44uE-Jl_OP3w-u6xWNxdXZ8tVZaCRUPUo9FBDY2opuexNa4eeW2Eb0YLVttctRymQ1yBg3dS2awfokPUS1wbaTsIxebP3bmK4nzFlNbpk0Hs9YZiTEhK45B2roaCv_0Hvwhyn8jsluroTpdJ-JzzZUyaGlCJatYluLN0rztRuCLUbQv0ZosCvHpTzesThEf3bfAH4HvjlPG7_o1Kr5afve-lvTIGSnQ</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>DeVore, Elliana Kirsh</creator><creator>Adamian, Nat</creator><creator>Jowett, Nate</creator><creator>Wang, Tiffany</creator><creator>Song, Phillip</creator><creator>Franco, Ramon</creator><creator>Naunheim, Matthew Roberts</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5242-0264</orcidid><orcidid>https://orcid.org/0000-0003-0206-5441</orcidid><orcidid>https://orcid.org/0000-0002-7034-9238</orcidid><orcidid>https://orcid.org/0000-0002-4549-6017</orcidid><orcidid>https://orcid.org/0000-0003-2056-4658</orcidid><orcidid>https://orcid.org/0000-0002-3927-3984</orcidid></search><sort><creationdate>202309</creationdate><title>Predictive Outcomes of Deep Learning Measurement of the Anterior Glottic Angle in Bilateral Vocal Fold Immobility</title><author>DeVore, Elliana Kirsh ; Adamian, Nat ; Jowett, Nate ; Wang, Tiffany ; Song, Phillip ; Franco, Ramon ; Naunheim, Matthew Roberts</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3573-9e2ad435c477179c6fd91f2f5263faf9a61e72e14323b54f86d38e097ebc36873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>artificial intelligence</topic><topic>Computer vision</topic><topic>Deep learning</topic><topic>Laryngoscopy</topic><topic>Patients</topic><topic>patient‐reported outcome measures</topic><topic>vocal cords</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DeVore, Elliana Kirsh</creatorcontrib><creatorcontrib>Adamian, Nat</creatorcontrib><creatorcontrib>Jowett, Nate</creatorcontrib><creatorcontrib>Wang, Tiffany</creatorcontrib><creatorcontrib>Song, Phillip</creatorcontrib><creatorcontrib>Franco, Ramon</creatorcontrib><creatorcontrib>Naunheim, Matthew Roberts</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>The Laryngoscope</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DeVore, Elliana Kirsh</au><au>Adamian, Nat</au><au>Jowett, Nate</au><au>Wang, Tiffany</au><au>Song, Phillip</au><au>Franco, Ramon</au><au>Naunheim, Matthew Roberts</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive Outcomes of Deep Learning Measurement of the Anterior Glottic Angle in Bilateral Vocal Fold Immobility</atitle><jtitle>The Laryngoscope</jtitle><addtitle>Laryngoscope</addtitle><date>2023-09</date><risdate>2023</risdate><volume>133</volume><issue>9</issue><spage>2285</spage><epage>2291</epage><pages>2285-2291</pages><issn>0023-852X</issn><eissn>1531-4995</eissn><abstract>Objective
(1) To compare maximum glottic opening angle (anterior glottic angle, AGA) in patients with bilateral vocal fold immobility (BVFI), unilateral vocal fold immobility (UVFI) and normal larynges (NL), and (2) to correlate maximum AGA with patient‐reported outcome measures.
Methods
Patients wisth BVFI, UVFI, and NL were retrospectively studied. An open‐source deep learning‐based computer vision tool for vocal fold tracking was used to analyze videolaryngoscopy. Minimum and maximum AGA were calculated and correlated with three patient‐reported outcomes measures.
Results
Two hundred and fourteen patients were included. Mean maximum AGA was 29.91° (14.40° SD), 42.59° (12.37° SD), and 57.08° (11.14° SD) in BVFI (N = 70), UVFI (N = 70), and NL (N = 72) groups, respectively (p < 0.001). Patients requiring operative airway intervention for BVFI had an average maximum AGA of 24.94° (10.66° SD), statistically different from those not requiring intervention (p = 0.0001). There was moderate negative correlation between Dyspnea Index scores and AGA (Spearman r = −0.345, p = 0.0003). Maximum AGA demonstrated high discriminatory ability for BVFI diagnosis (AUC 0.92, 95% CI 0.81–0.97, p < 0.001) and moderate ability to predict need for operative airway intervention (AUC 0.77, 95% CI 0.64–0.89, p < 0.001).
Conclusions
A computer vision tool for quantitative assessment of the AGA from videolaryngoscopy demonstrated ability to discriminate between patients with BVFI, UVFI, and normal controls and predict need for operative airway intervention. This tool may be useful for assessment of other neurological laryngeal conditions and may help guide decision‐making in laryngeal surgery.
Level of Evidence
III Laryngoscope, 133:2285–2291, 2023
The objective of this research was to apply a computer vision tool for assessment of anterior glottic angle (AGA) in patients with bilateral vocal fold immobility (BVFI), and to compare the AGA in BVFI with that of unilateral vocal fold immobility (UVFI) and normal larynges (NL) as measured by the algorithm. The computer vision tool was able to quantitatively assessof the AGA from videolaryngoscopy, demonstrating ability to discriminate between patients with BVFI, UVFI, and normal controls, as well as to predict need for operative airway intervention. This tool may be useful for assessment of other neurological laryngeal conditions and may help guide decision‐making in laryngeal surgery.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>36326102</pmid><doi>10.1002/lary.30473</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5242-0264</orcidid><orcidid>https://orcid.org/0000-0003-0206-5441</orcidid><orcidid>https://orcid.org/0000-0002-7034-9238</orcidid><orcidid>https://orcid.org/0000-0002-4549-6017</orcidid><orcidid>https://orcid.org/0000-0003-2056-4658</orcidid><orcidid>https://orcid.org/0000-0002-3927-3984</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0023-852X |
ispartof | The Laryngoscope, 2023-09, Vol.133 (9), p.2285-2291 |
issn | 0023-852X 1531-4995 |
language | eng |
recordid | cdi_proquest_miscellaneous_2731718043 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | artificial intelligence Computer vision Deep learning Laryngoscopy Patients patient‐reported outcome measures vocal cords |
title | Predictive Outcomes of Deep Learning Measurement of the Anterior Glottic Angle in Bilateral Vocal Fold Immobility |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A14%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20Outcomes%20of%20Deep%20Learning%20Measurement%20of%20the%20Anterior%20Glottic%20Angle%20in%20Bilateral%20Vocal%20Fold%20Immobility&rft.jtitle=The%20Laryngoscope&rft.au=DeVore,%20Elliana%20Kirsh&rft.date=2023-09&rft.volume=133&rft.issue=9&rft.spage=2285&rft.epage=2291&rft.pages=2285-2291&rft.issn=0023-852X&rft.eissn=1531-4995&rft_id=info:doi/10.1002/lary.30473&rft_dat=%3Cproquest_cross%3E2848253197%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3573-9e2ad435c477179c6fd91f2f5263faf9a61e72e14323b54f86d38e097ebc36873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2848253197&rft_id=info:pmid/36326102&rfr_iscdi=true |