Loading…

Characterization of diamond films deposited on titanium and its alloys

Titanium and its alloys have important applications for example in aerospace or as bioimplants. Some of these applications would be improved by diamond coatings. However the large thermal expansion mismatch between diamond and titanium or its alloys creates high residual stresses, up to about 7 GPa...

Full description

Saved in:
Bibliographic Details
Published in:Thin solid films 1995-12, Vol.270 (1), p.177-183
Main Authors: Rats, D., Vandenbulcke, L., Herbin, R., Benoit, R., Erre, R., Serin, V., Sevely, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Titanium and its alloys have important applications for example in aerospace or as bioimplants. Some of these applications would be improved by diamond coatings. However the large thermal expansion mismatch between diamond and titanium or its alloys creates high residual stresses, up to about 7 GPa at 800 °C, which represent an important drawback. In this study, polycrystalline diamond films were deposited on pure titanium and Ti-6Al-4V in a classical tubular microwave plasma reactor from C-H(-O)-containing gas mixtures, at a temperature in the range 600–900 °C. Raman spectroscopy provided information about the diamond grain stress, which is obviously related to the deposition temperature. X-ray diffraction indicates the presence of titanium carbide or oxycarbide. Some other characterizations by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) are reported. It is shown that XPS coupled to argon ionic etching allows us to study the first steps of the deposition process. The structure and the chemical composition at the interface of a thicker deposit are obtained by TEM and EELS.
ISSN:0040-6090
1879-2731
DOI:10.1016/0040-6090(95)06913-5