Loading…
Nanoparticle’s uptake and translocation mechanisms in plants via seed priming, foliar treatment, and root exposure: a review
Nanotechnology is one of the promising techniques and shares wide ranges of applications almost in every field of life. Nanomaterials are getting continuous attractions due to specific physical and chemical properties and being applied as multifunctional material. The use of nanomaterials/nanopartic...
Saved in:
Published in: | Environmental science and pollution research international 2022-12, Vol.29 (60), p.89823-89833 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nanotechnology is one of the promising techniques and shares wide ranges of applications almost in every field of life. Nanomaterials are getting continuous attractions due to specific physical and chemical properties and being applied as multifunctional material. The use of nanomaterials/nanoparticles in agriculture sector for crop improvement and protection against various environmental threats have attained greater significance. Size and nature of nanoparticles, mode of application, environmental conditions, rhizospheric and phyllospheric environment, and plant species are major factors that influence the action of nanoparticles. The mode or method of nanoparticle applications to plants is attaining greater attentions. Recently, different methods for nanoparticle applications (seed priming, foliar, and root application) are being used to improve crop growth. It is of quite worth that which method is suitable for nanoparticle application, and how nanoparticles can possibly translocate to various plant tissues from root to shoot or vice versa. These information’s are poorly understood and need more investigations to explore the comprehensive mechanism by which nanoparticles make their possible entry through different plant organs and how they transport to regulate various physiological and molecular functions in plant cells. Therefore, this study comprehensively provides the knowledge of nanoparticles uptake via seed priming, foliar exposure, and root application, and their possible translocation mechanism within plants influenced by various factors that has not clearly presented. This study will provide new insights to find out an actual uptake and translocation mechanism of nanoparticles that may help researchers to develop nanoparticle-based new strategies for plants to cope with various environmental challenges. This study also focuses on different soil factors or above ground factors that are involved in nanoparticles uptake and translocation and ultimately their functioning in plants. |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-022-23945-2 |