Loading…
Simultaneous adsorptive removal of three fluoroquinolones using humic acid modified hydrogel beads
This study elaborates the simultaneous removal of three different fluoroquinolones (FQs), i.e., Norfloxacin (NOR), Lomefloxacin (LOM), and Enrofloxacin (ENR) from water using hydrogel beads of humic acid coated biochar (HA-BC) and chitosan. In our previous study, this adsorbent has already achieved...
Saved in:
Published in: | Environmental science and pollution research international 2023-02, Vol.30 (9), p.24398-24407 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study elaborates the simultaneous removal of three different fluoroquinolones (FQs), i.e., Norfloxacin (NOR), Lomefloxacin (LOM), and Enrofloxacin (ENR) from water using hydrogel beads of humic acid coated biochar (HA-BC) and chitosan. In our previous study, this adsorbent has already achieved tremendous results for the removal of a single FQ, i.e., ciprofloxacin. Now, initial concentrations of all FQs were set 100 mg/L each, and the maximum adsorbed amounts were 38.08 mg/g (NOR), 25.03 mg/g (LOM), and 29.72 mg/g (ENR). Adsorption attained equilibrium after 24 h, which obeyed the pseudo-second-order kinetic model. The mutation of humic acid-biochar/chitosan hydrogel beads (HBCB) with alcoholic solvents, i.e., methanol and ethanol to replace water decreased its sorption capacities from 38.08 mg/g (NOR) to 34.91 mg/g and 32.19 mg/g, respectively. Similarly, from 25.03 mg/g (LOM) to 22.81 mg/g and 19.91 mg/g, and 29.72 mg/g (ENR) to 26.52 mg/g and 24.64 mg/g. Adsorption isotherm data for all FQs were up to both Langmuir and Freundlich, but it suited more to that of Langmuir adsorption isotherm model. Sorption capacities, for all FQs, had a minor decline due to addition of NaCl, NaNO
3
, and Na
2
SO
4
. However, there was a huge decline when Na
3
PO
4
was added into the adsorption system. Adsorbent was desorbed and regenerated for consecutive removal, and it showed good adsorption in the 4
th
cycle, i.e., 47 mg/g net adsorption. These results prove that HBCB is not only effective for adsorption removal of ciprofloxacin but also for other FQs too.
Graphical Abstract |
---|---|
ISSN: | 1614-7499 1614-7499 |
DOI: | 10.1007/s11356-022-23855-3 |