Loading…

Tuning Defects in a Halide Double Perovskite with Pressure

Dopant defects in semiconductors can trap charge carriers or ionize to produce charge carriersplaying a critical role in electronic transport. Halide perovskites are a technologically important semiconductor family with a large pressure response. Yet, to our knowledge, the effect of high pressures...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2022-11, Vol.144 (45), p.20763-20772
Main Authors: Wolf, Nathan R., Jaffe, Adam, Slavney, Adam H., Mao, Wendy L., Leppert, Linn, Karunadasa, Hemamala I.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a339t-9743afc175291a26edbd6214d167abac0bb7a57cfeee4aa1658f7f16314ff2013
cites cdi_FETCH-LOGICAL-a339t-9743afc175291a26edbd6214d167abac0bb7a57cfeee4aa1658f7f16314ff2013
container_end_page 20772
container_issue 45
container_start_page 20763
container_title Journal of the American Chemical Society
container_volume 144
creator Wolf, Nathan R.
Jaffe, Adam
Slavney, Adam H.
Mao, Wendy L.
Leppert, Linn
Karunadasa, Hemamala I.
description Dopant defects in semiconductors can trap charge carriers or ionize to produce charge carriersplaying a critical role in electronic transport. Halide perovskites are a technologically important semiconductor family with a large pressure response. Yet, to our knowledge, the effect of high pressures on defects in halide perovskites has not been experimentally investigated. Here, we study the structural, optical, and electronic consequences of compressing the small-bandgap double perovskites Cs2AgTlX6 (X = Cl or Br) up to 56 GPa. Mild compression to 1.7 GPa increases the conductivity of Cs2AgTlBr6 by ca. 1 order of magnitude and decreases its bandgap from 0.94 to 0.7 eV. Subsequent compression yields complex optoelectronic behavior: the bandgap varies by 1.2 eV and conductivity ranges by a factor of 104. These conductivity changes cannot be explained by the evolving bandgap. Instead, they can be understood as tuning of the bromine vacancy defect with pressurevarying between a delocalized shallow defect state with a small ionization energy and a localized deep defect state with a large ionization energy. Activation energy measurements reveal that the shallow-to-deep defect transition occurs near 1.5 GPa, well before the cubic-to-tetragonal phase transition. An analysis of the orbital interactions in Cs2AgTlBr6 illustrates how the bromine vacancy weakens the adjacent Tl s–Br p antibonding interaction, driving the shallow-to-deep defect transition. Our orbital analysis leads us to propose that halogen vacancies are most likely to be shallow donors in halide double perovskites that have a conduction band derived from the octahedral metal’s s orbitals.
doi_str_mv 10.1021/jacs.2c08607
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2734166741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734166741</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-9743afc175291a26edbd6214d167abac0bb7a57cfeee4aa1658f7f16314ff2013</originalsourceid><addsrcrecordid>eNptkLFOwzAURS0EEqWw8QEeGUjxsx07ZUMtUKRKdCiz5TjP4JImxU5A_D2NisTC9HSfjq50DyGXwCbAONxsrEsT7lihmD4iI8g5y3Lg6piMGGM804USp-Qspc0-Sl7AiNyu-yY0r3SOHl2XaGiopQtbhwrpvO3LGukKY_uZ3kOH9Ct0b3QVMaU-4jk58bZOePF7x-Tl4X49W2TL58en2d0ys0JMu2yqpbDegc75FCxXWJWV4iArUNqW1rGy1DbXziOitBZUXnjtQQmQ3nMGYkyuDr272H70mDqzDclhXdsG2z4ZroUEpbQc0OsD6mKbUkRvdjFsbfw2wMygyAyKzK-iv-bhuWn72Ox3_I_-AEYUZmI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734166741</pqid></control><display><type>article</type><title>Tuning Defects in a Halide Double Perovskite with Pressure</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Wolf, Nathan R. ; Jaffe, Adam ; Slavney, Adam H. ; Mao, Wendy L. ; Leppert, Linn ; Karunadasa, Hemamala I.</creator><creatorcontrib>Wolf, Nathan R. ; Jaffe, Adam ; Slavney, Adam H. ; Mao, Wendy L. ; Leppert, Linn ; Karunadasa, Hemamala I.</creatorcontrib><description>Dopant defects in semiconductors can trap charge carriers or ionize to produce charge carriersplaying a critical role in electronic transport. Halide perovskites are a technologically important semiconductor family with a large pressure response. Yet, to our knowledge, the effect of high pressures on defects in halide perovskites has not been experimentally investigated. Here, we study the structural, optical, and electronic consequences of compressing the small-bandgap double perovskites Cs2AgTlX6 (X = Cl or Br) up to 56 GPa. Mild compression to 1.7 GPa increases the conductivity of Cs2AgTlBr6 by ca. 1 order of magnitude and decreases its bandgap from 0.94 to 0.7 eV. Subsequent compression yields complex optoelectronic behavior: the bandgap varies by 1.2 eV and conductivity ranges by a factor of 104. These conductivity changes cannot be explained by the evolving bandgap. Instead, they can be understood as tuning of the bromine vacancy defect with pressurevarying between a delocalized shallow defect state with a small ionization energy and a localized deep defect state with a large ionization energy. Activation energy measurements reveal that the shallow-to-deep defect transition occurs near 1.5 GPa, well before the cubic-to-tetragonal phase transition. An analysis of the orbital interactions in Cs2AgTlBr6 illustrates how the bromine vacancy weakens the adjacent Tl s–Br p antibonding interaction, driving the shallow-to-deep defect transition. Our orbital analysis leads us to propose that halogen vacancies are most likely to be shallow donors in halide double perovskites that have a conduction band derived from the octahedral metal’s s orbitals.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.2c08607</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2022-11, Vol.144 (45), p.20763-20772</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-9743afc175291a26edbd6214d167abac0bb7a57cfeee4aa1658f7f16314ff2013</citedby><cites>FETCH-LOGICAL-a339t-9743afc175291a26edbd6214d167abac0bb7a57cfeee4aa1658f7f16314ff2013</cites><orcidid>0000-0002-4361-4382 ; 0000-0003-4949-8068 ; 0000-0002-9886-0249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wolf, Nathan R.</creatorcontrib><creatorcontrib>Jaffe, Adam</creatorcontrib><creatorcontrib>Slavney, Adam H.</creatorcontrib><creatorcontrib>Mao, Wendy L.</creatorcontrib><creatorcontrib>Leppert, Linn</creatorcontrib><creatorcontrib>Karunadasa, Hemamala I.</creatorcontrib><title>Tuning Defects in a Halide Double Perovskite with Pressure</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Dopant defects in semiconductors can trap charge carriers or ionize to produce charge carriersplaying a critical role in electronic transport. Halide perovskites are a technologically important semiconductor family with a large pressure response. Yet, to our knowledge, the effect of high pressures on defects in halide perovskites has not been experimentally investigated. Here, we study the structural, optical, and electronic consequences of compressing the small-bandgap double perovskites Cs2AgTlX6 (X = Cl or Br) up to 56 GPa. Mild compression to 1.7 GPa increases the conductivity of Cs2AgTlBr6 by ca. 1 order of magnitude and decreases its bandgap from 0.94 to 0.7 eV. Subsequent compression yields complex optoelectronic behavior: the bandgap varies by 1.2 eV and conductivity ranges by a factor of 104. These conductivity changes cannot be explained by the evolving bandgap. Instead, they can be understood as tuning of the bromine vacancy defect with pressurevarying between a delocalized shallow defect state with a small ionization energy and a localized deep defect state with a large ionization energy. Activation energy measurements reveal that the shallow-to-deep defect transition occurs near 1.5 GPa, well before the cubic-to-tetragonal phase transition. An analysis of the orbital interactions in Cs2AgTlBr6 illustrates how the bromine vacancy weakens the adjacent Tl s–Br p antibonding interaction, driving the shallow-to-deep defect transition. Our orbital analysis leads us to propose that halogen vacancies are most likely to be shallow donors in halide double perovskites that have a conduction band derived from the octahedral metal’s s orbitals.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptkLFOwzAURS0EEqWw8QEeGUjxsx07ZUMtUKRKdCiz5TjP4JImxU5A_D2NisTC9HSfjq50DyGXwCbAONxsrEsT7lihmD4iI8g5y3Lg6piMGGM804USp-Qspc0-Sl7AiNyu-yY0r3SOHl2XaGiopQtbhwrpvO3LGukKY_uZ3kOH9Ct0b3QVMaU-4jk58bZOePF7x-Tl4X49W2TL58en2d0ys0JMu2yqpbDegc75FCxXWJWV4iArUNqW1rGy1DbXziOitBZUXnjtQQmQ3nMGYkyuDr272H70mDqzDclhXdsG2z4ZroUEpbQc0OsD6mKbUkRvdjFsbfw2wMygyAyKzK-iv-bhuWn72Ox3_I_-AEYUZmI</recordid><startdate>20221116</startdate><enddate>20221116</enddate><creator>Wolf, Nathan R.</creator><creator>Jaffe, Adam</creator><creator>Slavney, Adam H.</creator><creator>Mao, Wendy L.</creator><creator>Leppert, Linn</creator><creator>Karunadasa, Hemamala I.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4361-4382</orcidid><orcidid>https://orcid.org/0000-0003-4949-8068</orcidid><orcidid>https://orcid.org/0000-0002-9886-0249</orcidid></search><sort><creationdate>20221116</creationdate><title>Tuning Defects in a Halide Double Perovskite with Pressure</title><author>Wolf, Nathan R. ; Jaffe, Adam ; Slavney, Adam H. ; Mao, Wendy L. ; Leppert, Linn ; Karunadasa, Hemamala I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-9743afc175291a26edbd6214d167abac0bb7a57cfeee4aa1658f7f16314ff2013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolf, Nathan R.</creatorcontrib><creatorcontrib>Jaffe, Adam</creatorcontrib><creatorcontrib>Slavney, Adam H.</creatorcontrib><creatorcontrib>Mao, Wendy L.</creatorcontrib><creatorcontrib>Leppert, Linn</creatorcontrib><creatorcontrib>Karunadasa, Hemamala I.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolf, Nathan R.</au><au>Jaffe, Adam</au><au>Slavney, Adam H.</au><au>Mao, Wendy L.</au><au>Leppert, Linn</au><au>Karunadasa, Hemamala I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning Defects in a Halide Double Perovskite with Pressure</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2022-11-16</date><risdate>2022</risdate><volume>144</volume><issue>45</issue><spage>20763</spage><epage>20772</epage><pages>20763-20772</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Dopant defects in semiconductors can trap charge carriers or ionize to produce charge carriersplaying a critical role in electronic transport. Halide perovskites are a technologically important semiconductor family with a large pressure response. Yet, to our knowledge, the effect of high pressures on defects in halide perovskites has not been experimentally investigated. Here, we study the structural, optical, and electronic consequences of compressing the small-bandgap double perovskites Cs2AgTlX6 (X = Cl or Br) up to 56 GPa. Mild compression to 1.7 GPa increases the conductivity of Cs2AgTlBr6 by ca. 1 order of magnitude and decreases its bandgap from 0.94 to 0.7 eV. Subsequent compression yields complex optoelectronic behavior: the bandgap varies by 1.2 eV and conductivity ranges by a factor of 104. These conductivity changes cannot be explained by the evolving bandgap. Instead, they can be understood as tuning of the bromine vacancy defect with pressurevarying between a delocalized shallow defect state with a small ionization energy and a localized deep defect state with a large ionization energy. Activation energy measurements reveal that the shallow-to-deep defect transition occurs near 1.5 GPa, well before the cubic-to-tetragonal phase transition. An analysis of the orbital interactions in Cs2AgTlBr6 illustrates how the bromine vacancy weakens the adjacent Tl s–Br p antibonding interaction, driving the shallow-to-deep defect transition. Our orbital analysis leads us to propose that halogen vacancies are most likely to be shallow donors in halide double perovskites that have a conduction band derived from the octahedral metal’s s orbitals.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.2c08607</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4361-4382</orcidid><orcidid>https://orcid.org/0000-0003-4949-8068</orcidid><orcidid>https://orcid.org/0000-0002-9886-0249</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2022-11, Vol.144 (45), p.20763-20772
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2734166741
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Tuning Defects in a Halide Double Perovskite with Pressure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A05%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20Defects%20in%20a%20Halide%20Double%20Perovskite%20with%20Pressure&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Wolf,%20Nathan%20R.&rft.date=2022-11-16&rft.volume=144&rft.issue=45&rft.spage=20763&rft.epage=20772&rft.pages=20763-20772&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.2c08607&rft_dat=%3Cproquest_cross%3E2734166741%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a339t-9743afc175291a26edbd6214d167abac0bb7a57cfeee4aa1658f7f16314ff2013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2734166741&rft_id=info:pmid/&rfr_iscdi=true