Loading…

A Seven-Layer Convolutional Neural Network for Chest CT-Based COVID-19 Diagnosis Using Stochastic Pooling

(Aim) COVID-19 pandemic causes numerous death tolls till now. Chest CT is an effective imaging sensor system to make accurate diagnosis. (Method) This article proposed a novel seven layer convolutional neural network based smart diagnosis model for COVID-19 diagnosis (7L-CNN-CD). We proposed a 14-wa...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2022-09, Vol.22 (18), p.17573-17582
Main Authors: Zhang, Yudong, Satapathy, Suresh Chandra, Zhu, Li-Yao, Gorriz, Juan Manuel, Wang, Shuihua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c424t-d6c4bd0b670204a160d4be752cb33dfe83f0a917cc9aba592e73cb28a8e0fe803
cites cdi_FETCH-LOGICAL-c424t-d6c4bd0b670204a160d4be752cb33dfe83f0a917cc9aba592e73cb28a8e0fe803
container_end_page 17582
container_issue 18
container_start_page 17573
container_title IEEE sensors journal
container_volume 22
creator Zhang, Yudong
Satapathy, Suresh Chandra
Zhu, Li-Yao
Gorriz, Juan Manuel
Wang, Shuihua
description (Aim) COVID-19 pandemic causes numerous death tolls till now. Chest CT is an effective imaging sensor system to make accurate diagnosis. (Method) This article proposed a novel seven layer convolutional neural network based smart diagnosis model for COVID-19 diagnosis (7L-CNN-CD). We proposed a 14-way data augmentation to enhance the training set, and introduced stochastic pooling to replace traditional pooling methods. (Results) The 10 runs of 10-fold cross validation experiment show that our 7L-CNN-CD approach achieves a sensitivity of 94.44±0.73, a specificity of 93.63±1.60, and an accuracy of 94.03±0.80. (Conclusion) Our proposed 7L-CNN-CD is effective in diagnosing COVID-19 in chest CT images. It gives better performance than several state-of-the-art algorithms. The data augmentation and stochastic pooling methods are proven to be effective.
doi_str_mv 10.1109/JSEN.2020.3025855
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2734167795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9203857</ieee_id><sourcerecordid>2714892986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-d6c4bd0b670204a160d4be752cb33dfe83f0a917cc9aba592e73cb28a8e0fe803</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxSMEEqXwARAXS1x6yeK_sX1BatMWilYt0raIm-U4k12XbNzayaJ-exx2VQlOM5r5zZOfX1G8J3hBCNafvq0urhcUU7xgmAolxIviiAihSiK5ejn3DJecyZ-vizcp3WNMtBTyqPCnaAU7GMqlfYKI6jDsQj-NPgy2R9cwxb9l_B3iL9SFDGwgjai-Lc9sghbVNz-uzkui0bm36yEkn9Bd8sMarcbgNjaN3qHvIfR59LZ41dk-wbtDPS7uLi9u66_l8ubLVX26LB2nfCzbyvGmxU0lsxluSYVb3oAU1DWMtR0o1mGriXRO28YKTUEy11BlFeC8xey4-LzXfZiaLbQOhjGbMA_Rb218MsF68-9m8BuzDjujRcUxk1ng5CAQw-OU7ZqtTw763g4QpmSoZJxUUmqR0Y__ofdhivnrZopwpalWVabInnIxpBShe34MwWZOz8zpmTk9c0gv33zY33gAeOY1xUwJyf4Azq-Wxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714892986</pqid></control><display><type>article</type><title>A Seven-Layer Convolutional Neural Network for Chest CT-Based COVID-19 Diagnosis Using Stochastic Pooling</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhang, Yudong ; Satapathy, Suresh Chandra ; Zhu, Li-Yao ; Gorriz, Juan Manuel ; Wang, Shuihua</creator><creatorcontrib>Zhang, Yudong ; Satapathy, Suresh Chandra ; Zhu, Li-Yao ; Gorriz, Juan Manuel ; Wang, Shuihua</creatorcontrib><description>(Aim) COVID-19 pandemic causes numerous death tolls till now. Chest CT is an effective imaging sensor system to make accurate diagnosis. (Method) This article proposed a novel seven layer convolutional neural network based smart diagnosis model for COVID-19 diagnosis (7L-CNN-CD). We proposed a 14-way data augmentation to enhance the training set, and introduced stochastic pooling to replace traditional pooling methods. (Results) The 10 runs of 10-fold cross validation experiment show that our 7L-CNN-CD approach achieves a sensitivity of 94.44±0.73, a specificity of 93.63±1.60, and an accuracy of 94.03±0.80. (Conclusion) Our proposed 7L-CNN-CD is effective in diagnosing COVID-19 in chest CT images. It gives better performance than several state-of-the-art algorithms. The data augmentation and stochastic pooling methods are proven to be effective.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.3025855</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Agriculture ; Algorithms ; Artificial neural networks ; Computed tomography ; Convolutional neural network ; Convolutional neural networks ; COVID-19 ; Data augmentation ; deep learning ; Diagnosis ; Gray-scale ; Sensors ; stochastic pooling ; Stochastic processes ; Training</subject><ispartof>IEEE sensors journal, 2022-09, Vol.22 (18), p.17573-17582</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>2020 IEEE</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-d6c4bd0b670204a160d4be752cb33dfe83f0a917cc9aba592e73cb28a8e0fe803</citedby><cites>FETCH-LOGICAL-c424t-d6c4bd0b670204a160d4be752cb33dfe83f0a917cc9aba592e73cb28a8e0fe803</cites><orcidid>0000-0001-7069-1714 ; 0000-0002-4870-1493 ; 0000-0001-8236-4104 ; 0000-0003-2238-6808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9203857$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Zhang, Yudong</creatorcontrib><creatorcontrib>Satapathy, Suresh Chandra</creatorcontrib><creatorcontrib>Zhu, Li-Yao</creatorcontrib><creatorcontrib>Gorriz, Juan Manuel</creatorcontrib><creatorcontrib>Wang, Shuihua</creatorcontrib><title>A Seven-Layer Convolutional Neural Network for Chest CT-Based COVID-19 Diagnosis Using Stochastic Pooling</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>(Aim) COVID-19 pandemic causes numerous death tolls till now. Chest CT is an effective imaging sensor system to make accurate diagnosis. (Method) This article proposed a novel seven layer convolutional neural network based smart diagnosis model for COVID-19 diagnosis (7L-CNN-CD). We proposed a 14-way data augmentation to enhance the training set, and introduced stochastic pooling to replace traditional pooling methods. (Results) The 10 runs of 10-fold cross validation experiment show that our 7L-CNN-CD approach achieves a sensitivity of 94.44±0.73, a specificity of 93.63±1.60, and an accuracy of 94.03±0.80. (Conclusion) Our proposed 7L-CNN-CD is effective in diagnosing COVID-19 in chest CT images. It gives better performance than several state-of-the-art algorithms. The data augmentation and stochastic pooling methods are proven to be effective.</description><subject>Agriculture</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Computed tomography</subject><subject>Convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>COVID-19</subject><subject>Data augmentation</subject><subject>deep learning</subject><subject>Diagnosis</subject><subject>Gray-scale</subject><subject>Sensors</subject><subject>stochastic pooling</subject><subject>Stochastic processes</subject><subject>Training</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkU9v1DAQxSMEEqXwARAXS1x6yeK_sX1BatMWilYt0raIm-U4k12XbNzayaJ-exx2VQlOM5r5zZOfX1G8J3hBCNafvq0urhcUU7xgmAolxIviiAihSiK5ejn3DJecyZ-vizcp3WNMtBTyqPCnaAU7GMqlfYKI6jDsQj-NPgy2R9cwxb9l_B3iL9SFDGwgjai-Lc9sghbVNz-uzkui0bm36yEkn9Bd8sMarcbgNjaN3qHvIfR59LZ41dk-wbtDPS7uLi9u66_l8ubLVX26LB2nfCzbyvGmxU0lsxluSYVb3oAU1DWMtR0o1mGriXRO28YKTUEy11BlFeC8xey4-LzXfZiaLbQOhjGbMA_Rb218MsF68-9m8BuzDjujRcUxk1ng5CAQw-OU7ZqtTw763g4QpmSoZJxUUmqR0Y__ofdhivnrZopwpalWVabInnIxpBShe34MwWZOz8zpmTk9c0gv33zY33gAeOY1xUwJyf4Azq-Wxg</recordid><startdate>20220915</startdate><enddate>20220915</enddate><creator>Zhang, Yudong</creator><creator>Satapathy, Suresh Chandra</creator><creator>Zhu, Li-Yao</creator><creator>Gorriz, Juan Manuel</creator><creator>Wang, Shuihua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7069-1714</orcidid><orcidid>https://orcid.org/0000-0002-4870-1493</orcidid><orcidid>https://orcid.org/0000-0001-8236-4104</orcidid><orcidid>https://orcid.org/0000-0003-2238-6808</orcidid></search><sort><creationdate>20220915</creationdate><title>A Seven-Layer Convolutional Neural Network for Chest CT-Based COVID-19 Diagnosis Using Stochastic Pooling</title><author>Zhang, Yudong ; Satapathy, Suresh Chandra ; Zhu, Li-Yao ; Gorriz, Juan Manuel ; Wang, Shuihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-d6c4bd0b670204a160d4be752cb33dfe83f0a917cc9aba592e73cb28a8e0fe803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Computed tomography</topic><topic>Convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>COVID-19</topic><topic>Data augmentation</topic><topic>deep learning</topic><topic>Diagnosis</topic><topic>Gray-scale</topic><topic>Sensors</topic><topic>stochastic pooling</topic><topic>Stochastic processes</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yudong</creatorcontrib><creatorcontrib>Satapathy, Suresh Chandra</creatorcontrib><creatorcontrib>Zhu, Li-Yao</creatorcontrib><creatorcontrib>Gorriz, Juan Manuel</creatorcontrib><creatorcontrib>Wang, Shuihua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yudong</au><au>Satapathy, Suresh Chandra</au><au>Zhu, Li-Yao</au><au>Gorriz, Juan Manuel</au><au>Wang, Shuihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Seven-Layer Convolutional Neural Network for Chest CT-Based COVID-19 Diagnosis Using Stochastic Pooling</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-09-15</date><risdate>2022</risdate><volume>22</volume><issue>18</issue><spage>17573</spage><epage>17582</epage><pages>17573-17582</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>(Aim) COVID-19 pandemic causes numerous death tolls till now. Chest CT is an effective imaging sensor system to make accurate diagnosis. (Method) This article proposed a novel seven layer convolutional neural network based smart diagnosis model for COVID-19 diagnosis (7L-CNN-CD). We proposed a 14-way data augmentation to enhance the training set, and introduced stochastic pooling to replace traditional pooling methods. (Results) The 10 runs of 10-fold cross validation experiment show that our 7L-CNN-CD approach achieves a sensitivity of 94.44±0.73, a specificity of 93.63±1.60, and an accuracy of 94.03±0.80. (Conclusion) Our proposed 7L-CNN-CD is effective in diagnosing COVID-19 in chest CT images. It gives better performance than several state-of-the-art algorithms. The data augmentation and stochastic pooling methods are proven to be effective.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.3025855</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7069-1714</orcidid><orcidid>https://orcid.org/0000-0002-4870-1493</orcidid><orcidid>https://orcid.org/0000-0001-8236-4104</orcidid><orcidid>https://orcid.org/0000-0003-2238-6808</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2022-09, Vol.22 (18), p.17573-17582
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_miscellaneous_2734167795
source IEEE Electronic Library (IEL) Journals
subjects Agriculture
Algorithms
Artificial neural networks
Computed tomography
Convolutional neural network
Convolutional neural networks
COVID-19
Data augmentation
deep learning
Diagnosis
Gray-scale
Sensors
stochastic pooling
Stochastic processes
Training
title A Seven-Layer Convolutional Neural Network for Chest CT-Based COVID-19 Diagnosis Using Stochastic Pooling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A47%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Seven-Layer%20Convolutional%20Neural%20Network%20for%20Chest%20CT-Based%20COVID-19%20Diagnosis%20Using%20Stochastic%20Pooling&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zhang,%20Yudong&rft.date=2022-09-15&rft.volume=22&rft.issue=18&rft.spage=17573&rft.epage=17582&rft.pages=17573-17582&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.3025855&rft_dat=%3Cproquest_pubme%3E2714892986%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-d6c4bd0b670204a160d4be752cb33dfe83f0a917cc9aba592e73cb28a8e0fe803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2714892986&rft_id=info:pmid/&rft_ieee_id=9203857&rfr_iscdi=true