Loading…
Calibrating the Hole Mobility Measurements Implemented by Transient Electroluminescence Technology
To date, measuring the carrier mobility in semiconductor films, especially for the amorphous organic small-molecule films, is still a big challenge. Here, we demonstrate that transient electroluminescence (TrEL) spectroscopy with quantum-dot light-emitting diodes as the platform is a feasible and re...
Saved in:
Published in: | ACS applied materials & interfaces 2022-11, Vol.14 (46), p.52253-52261 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a307t-6156d6c1677ee40d2c480b1ddca77320840d9079aeb46194971fd9eb5474a2d3 |
---|---|
cites | cdi_FETCH-LOGICAL-a307t-6156d6c1677ee40d2c480b1ddca77320840d9079aeb46194971fd9eb5474a2d3 |
container_end_page | 52261 |
container_issue | 46 |
container_start_page | 52253 |
container_title | ACS applied materials & interfaces |
container_volume | 14 |
creator | Yu, Panlong Zhu, Xiaoxiang Bai, Jialin Zhang, Hanzhuang Ji, Wenyu |
description | To date, measuring the carrier mobility in semiconductor films, especially for the amorphous organic small-molecule films, is still a big challenge. Here, we demonstrate that transient electroluminescence (TrEL) spectroscopy with quantum-dot light-emitting diodes as the platform is a feasible and reliable method to evaluate the carrier mobility of such amorphous films. The position of the exciton formation zone is precisely determined and controlled by employing a quantum dot monolayer as the emissive layer. The electrical field intensity across the organic layer is evaluated through the charge density at the electrode calculated by the transient current. Then, the charge carrier mobility is obtained by combining the electroluminescence (EL) delay time and the thickness of the organic layer. Additionally, we demonstrate that the large roughness of the organic layer leads to serious charge accumulation and, hence, a high localized electrical field, which provides preferred charge injection paths, reducing the EL delay time and underestimating the EL delay time. Therefore, a thick organic film is the prerequisite for a reliable measurement of charge carrier mobility, which can circumvent the negative effect of film roughness. |
doi_str_mv | 10.1021/acsami.2c14507 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2734168481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734168481</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-6156d6c1677ee40d2c480b1ddca77320840d9079aeb46194971fd9eb5474a2d3</originalsourceid><addsrcrecordid>eNp1ULFOwzAUtBBIlMLK7BEhtdiOEycjqgqt1Iolu-U4r60rxy52MuTvMQSxMb17p7une4fQIyVLShh9UTqqziyZpjwn4grNaMX5omQ5u_7DnN-iuxjPhBQZI_kMNStlTRNUb9wR9yfAG28B731jrOlHvAcVhwAduD7ibXexPxBa3Iy4DspFk1a8tqD74O3QGQdRg9OAa9An560_jvfo5qBshIffOUf127pebRa7j_ft6nW3UBkR_aKgedEWmhZCAHDSMs1L0tC21UqIFLZMXEVEpaDhRXqnEvTQVtDkXHDF2myOnqazl-A_B4i97EzKYq1y4Icomcg4LUpe0iRdTlIdfIwBDvISTKfCKCmR313KqUv522UyPE-GxMuzH4JLj_wn_gIsr3fu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734168481</pqid></control><display><type>article</type><title>Calibrating the Hole Mobility Measurements Implemented by Transient Electroluminescence Technology</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Yu, Panlong ; Zhu, Xiaoxiang ; Bai, Jialin ; Zhang, Hanzhuang ; Ji, Wenyu</creator><creatorcontrib>Yu, Panlong ; Zhu, Xiaoxiang ; Bai, Jialin ; Zhang, Hanzhuang ; Ji, Wenyu</creatorcontrib><description>To date, measuring the carrier mobility in semiconductor films, especially for the amorphous organic small-molecule films, is still a big challenge. Here, we demonstrate that transient electroluminescence (TrEL) spectroscopy with quantum-dot light-emitting diodes as the platform is a feasible and reliable method to evaluate the carrier mobility of such amorphous films. The position of the exciton formation zone is precisely determined and controlled by employing a quantum dot monolayer as the emissive layer. The electrical field intensity across the organic layer is evaluated through the charge density at the electrode calculated by the transient current. Then, the charge carrier mobility is obtained by combining the electroluminescence (EL) delay time and the thickness of the organic layer. Additionally, we demonstrate that the large roughness of the organic layer leads to serious charge accumulation and, hence, a high localized electrical field, which provides preferred charge injection paths, reducing the EL delay time and underestimating the EL delay time. Therefore, a thick organic film is the prerequisite for a reliable measurement of charge carrier mobility, which can circumvent the negative effect of film roughness.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c14507</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Organic Electronic Devices</subject><ispartof>ACS applied materials & interfaces, 2022-11, Vol.14 (46), p.52253-52261</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-6156d6c1677ee40d2c480b1ddca77320840d9079aeb46194971fd9eb5474a2d3</citedby><cites>FETCH-LOGICAL-a307t-6156d6c1677ee40d2c480b1ddca77320840d9079aeb46194971fd9eb5474a2d3</cites><orcidid>0000-0003-2932-5119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yu, Panlong</creatorcontrib><creatorcontrib>Zhu, Xiaoxiang</creatorcontrib><creatorcontrib>Bai, Jialin</creatorcontrib><creatorcontrib>Zhang, Hanzhuang</creatorcontrib><creatorcontrib>Ji, Wenyu</creatorcontrib><title>Calibrating the Hole Mobility Measurements Implemented by Transient Electroluminescence Technology</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>To date, measuring the carrier mobility in semiconductor films, especially for the amorphous organic small-molecule films, is still a big challenge. Here, we demonstrate that transient electroluminescence (TrEL) spectroscopy with quantum-dot light-emitting diodes as the platform is a feasible and reliable method to evaluate the carrier mobility of such amorphous films. The position of the exciton formation zone is precisely determined and controlled by employing a quantum dot monolayer as the emissive layer. The electrical field intensity across the organic layer is evaluated through the charge density at the electrode calculated by the transient current. Then, the charge carrier mobility is obtained by combining the electroluminescence (EL) delay time and the thickness of the organic layer. Additionally, we demonstrate that the large roughness of the organic layer leads to serious charge accumulation and, hence, a high localized electrical field, which provides preferred charge injection paths, reducing the EL delay time and underestimating the EL delay time. Therefore, a thick organic film is the prerequisite for a reliable measurement of charge carrier mobility, which can circumvent the negative effect of film roughness.</description><subject>Organic Electronic Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1ULFOwzAUtBBIlMLK7BEhtdiOEycjqgqt1Iolu-U4r60rxy52MuTvMQSxMb17p7une4fQIyVLShh9UTqqziyZpjwn4grNaMX5omQ5u_7DnN-iuxjPhBQZI_kMNStlTRNUb9wR9yfAG28B731jrOlHvAcVhwAduD7ibXexPxBa3Iy4DspFk1a8tqD74O3QGQdRg9OAa9An560_jvfo5qBshIffOUf127pebRa7j_ft6nW3UBkR_aKgedEWmhZCAHDSMs1L0tC21UqIFLZMXEVEpaDhRXqnEvTQVtDkXHDF2myOnqazl-A_B4i97EzKYq1y4Icomcg4LUpe0iRdTlIdfIwBDvISTKfCKCmR313KqUv522UyPE-GxMuzH4JLj_wn_gIsr3fu</recordid><startdate>20221123</startdate><enddate>20221123</enddate><creator>Yu, Panlong</creator><creator>Zhu, Xiaoxiang</creator><creator>Bai, Jialin</creator><creator>Zhang, Hanzhuang</creator><creator>Ji, Wenyu</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2932-5119</orcidid></search><sort><creationdate>20221123</creationdate><title>Calibrating the Hole Mobility Measurements Implemented by Transient Electroluminescence Technology</title><author>Yu, Panlong ; Zhu, Xiaoxiang ; Bai, Jialin ; Zhang, Hanzhuang ; Ji, Wenyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-6156d6c1677ee40d2c480b1ddca77320840d9079aeb46194971fd9eb5474a2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Organic Electronic Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Panlong</creatorcontrib><creatorcontrib>Zhu, Xiaoxiang</creatorcontrib><creatorcontrib>Bai, Jialin</creatorcontrib><creatorcontrib>Zhang, Hanzhuang</creatorcontrib><creatorcontrib>Ji, Wenyu</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Panlong</au><au>Zhu, Xiaoxiang</au><au>Bai, Jialin</au><au>Zhang, Hanzhuang</au><au>Ji, Wenyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calibrating the Hole Mobility Measurements Implemented by Transient Electroluminescence Technology</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-11-23</date><risdate>2022</risdate><volume>14</volume><issue>46</issue><spage>52253</spage><epage>52261</epage><pages>52253-52261</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>To date, measuring the carrier mobility in semiconductor films, especially for the amorphous organic small-molecule films, is still a big challenge. Here, we demonstrate that transient electroluminescence (TrEL) spectroscopy with quantum-dot light-emitting diodes as the platform is a feasible and reliable method to evaluate the carrier mobility of such amorphous films. The position of the exciton formation zone is precisely determined and controlled by employing a quantum dot monolayer as the emissive layer. The electrical field intensity across the organic layer is evaluated through the charge density at the electrode calculated by the transient current. Then, the charge carrier mobility is obtained by combining the electroluminescence (EL) delay time and the thickness of the organic layer. Additionally, we demonstrate that the large roughness of the organic layer leads to serious charge accumulation and, hence, a high localized electrical field, which provides preferred charge injection paths, reducing the EL delay time and underestimating the EL delay time. Therefore, a thick organic film is the prerequisite for a reliable measurement of charge carrier mobility, which can circumvent the negative effect of film roughness.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.2c14507</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2932-5119</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2022-11, Vol.14 (46), p.52253-52261 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2734168481 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Organic Electronic Devices |
title | Calibrating the Hole Mobility Measurements Implemented by Transient Electroluminescence Technology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A42%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calibrating%20the%20Hole%20Mobility%20Measurements%20Implemented%20by%20Transient%20Electroluminescence%20Technology&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Yu,%20Panlong&rft.date=2022-11-23&rft.volume=14&rft.issue=46&rft.spage=52253&rft.epage=52261&rft.pages=52253-52261&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c14507&rft_dat=%3Cproquest_cross%3E2734168481%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a307t-6156d6c1677ee40d2c480b1ddca77320840d9079aeb46194971fd9eb5474a2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2734168481&rft_id=info:pmid/&rfr_iscdi=true |