Loading…

Calibrating the Hole Mobility Measurements Implemented by Transient Electroluminescence Technology

To date, measuring the carrier mobility in semiconductor films, especially for the amorphous organic small-molecule films, is still a big challenge. Here, we demonstrate that transient electroluminescence (TrEL) spectroscopy with quantum-dot light-emitting diodes as the platform is a feasible and re...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2022-11, Vol.14 (46), p.52253-52261
Main Authors: Yu, Panlong, Zhu, Xiaoxiang, Bai, Jialin, Zhang, Hanzhuang, Ji, Wenyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a307t-6156d6c1677ee40d2c480b1ddca77320840d9079aeb46194971fd9eb5474a2d3
cites cdi_FETCH-LOGICAL-a307t-6156d6c1677ee40d2c480b1ddca77320840d9079aeb46194971fd9eb5474a2d3
container_end_page 52261
container_issue 46
container_start_page 52253
container_title ACS applied materials & interfaces
container_volume 14
creator Yu, Panlong
Zhu, Xiaoxiang
Bai, Jialin
Zhang, Hanzhuang
Ji, Wenyu
description To date, measuring the carrier mobility in semiconductor films, especially for the amorphous organic small-molecule films, is still a big challenge. Here, we demonstrate that transient electroluminescence (TrEL) spectroscopy with quantum-dot light-emitting diodes as the platform is a feasible and reliable method to evaluate the carrier mobility of such amorphous films. The position of the exciton formation zone is precisely determined and controlled by employing a quantum dot monolayer as the emissive layer. The electrical field intensity across the organic layer is evaluated through the charge density at the electrode calculated by the transient current. Then, the charge carrier mobility is obtained by combining the electroluminescence (EL) delay time and the thickness of the organic layer. Additionally, we demonstrate that the large roughness of the organic layer leads to serious charge accumulation and, hence, a high localized electrical field, which provides preferred charge injection paths, reducing the EL delay time and underestimating the EL delay time. Therefore, a thick organic film is the prerequisite for a reliable measurement of charge carrier mobility, which can circumvent the negative effect of film roughness.
doi_str_mv 10.1021/acsami.2c14507
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2734168481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734168481</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-6156d6c1677ee40d2c480b1ddca77320840d9079aeb46194971fd9eb5474a2d3</originalsourceid><addsrcrecordid>eNp1ULFOwzAUtBBIlMLK7BEhtdiOEycjqgqt1Iolu-U4r60rxy52MuTvMQSxMb17p7une4fQIyVLShh9UTqqziyZpjwn4grNaMX5omQ5u_7DnN-iuxjPhBQZI_kMNStlTRNUb9wR9yfAG28B731jrOlHvAcVhwAduD7ibXexPxBa3Iy4DspFk1a8tqD74O3QGQdRg9OAa9An560_jvfo5qBshIffOUf127pebRa7j_ft6nW3UBkR_aKgedEWmhZCAHDSMs1L0tC21UqIFLZMXEVEpaDhRXqnEvTQVtDkXHDF2myOnqazl-A_B4i97EzKYq1y4Icomcg4LUpe0iRdTlIdfIwBDvISTKfCKCmR313KqUv522UyPE-GxMuzH4JLj_wn_gIsr3fu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734168481</pqid></control><display><type>article</type><title>Calibrating the Hole Mobility Measurements Implemented by Transient Electroluminescence Technology</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Yu, Panlong ; Zhu, Xiaoxiang ; Bai, Jialin ; Zhang, Hanzhuang ; Ji, Wenyu</creator><creatorcontrib>Yu, Panlong ; Zhu, Xiaoxiang ; Bai, Jialin ; Zhang, Hanzhuang ; Ji, Wenyu</creatorcontrib><description>To date, measuring the carrier mobility in semiconductor films, especially for the amorphous organic small-molecule films, is still a big challenge. Here, we demonstrate that transient electroluminescence (TrEL) spectroscopy with quantum-dot light-emitting diodes as the platform is a feasible and reliable method to evaluate the carrier mobility of such amorphous films. The position of the exciton formation zone is precisely determined and controlled by employing a quantum dot monolayer as the emissive layer. The electrical field intensity across the organic layer is evaluated through the charge density at the electrode calculated by the transient current. Then, the charge carrier mobility is obtained by combining the electroluminescence (EL) delay time and the thickness of the organic layer. Additionally, we demonstrate that the large roughness of the organic layer leads to serious charge accumulation and, hence, a high localized electrical field, which provides preferred charge injection paths, reducing the EL delay time and underestimating the EL delay time. Therefore, a thick organic film is the prerequisite for a reliable measurement of charge carrier mobility, which can circumvent the negative effect of film roughness.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c14507</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Organic Electronic Devices</subject><ispartof>ACS applied materials &amp; interfaces, 2022-11, Vol.14 (46), p.52253-52261</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-6156d6c1677ee40d2c480b1ddca77320840d9079aeb46194971fd9eb5474a2d3</citedby><cites>FETCH-LOGICAL-a307t-6156d6c1677ee40d2c480b1ddca77320840d9079aeb46194971fd9eb5474a2d3</cites><orcidid>0000-0003-2932-5119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yu, Panlong</creatorcontrib><creatorcontrib>Zhu, Xiaoxiang</creatorcontrib><creatorcontrib>Bai, Jialin</creatorcontrib><creatorcontrib>Zhang, Hanzhuang</creatorcontrib><creatorcontrib>Ji, Wenyu</creatorcontrib><title>Calibrating the Hole Mobility Measurements Implemented by Transient Electroluminescence Technology</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>To date, measuring the carrier mobility in semiconductor films, especially for the amorphous organic small-molecule films, is still a big challenge. Here, we demonstrate that transient electroluminescence (TrEL) spectroscopy with quantum-dot light-emitting diodes as the platform is a feasible and reliable method to evaluate the carrier mobility of such amorphous films. The position of the exciton formation zone is precisely determined and controlled by employing a quantum dot monolayer as the emissive layer. The electrical field intensity across the organic layer is evaluated through the charge density at the electrode calculated by the transient current. Then, the charge carrier mobility is obtained by combining the electroluminescence (EL) delay time and the thickness of the organic layer. Additionally, we demonstrate that the large roughness of the organic layer leads to serious charge accumulation and, hence, a high localized electrical field, which provides preferred charge injection paths, reducing the EL delay time and underestimating the EL delay time. Therefore, a thick organic film is the prerequisite for a reliable measurement of charge carrier mobility, which can circumvent the negative effect of film roughness.</description><subject>Organic Electronic Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1ULFOwzAUtBBIlMLK7BEhtdiOEycjqgqt1Iolu-U4r60rxy52MuTvMQSxMb17p7une4fQIyVLShh9UTqqziyZpjwn4grNaMX5omQ5u_7DnN-iuxjPhBQZI_kMNStlTRNUb9wR9yfAG28B731jrOlHvAcVhwAduD7ibXexPxBa3Iy4DspFk1a8tqD74O3QGQdRg9OAa9An560_jvfo5qBshIffOUf127pebRa7j_ft6nW3UBkR_aKgedEWmhZCAHDSMs1L0tC21UqIFLZMXEVEpaDhRXqnEvTQVtDkXHDF2myOnqazl-A_B4i97EzKYq1y4Icomcg4LUpe0iRdTlIdfIwBDvISTKfCKCmR313KqUv522UyPE-GxMuzH4JLj_wn_gIsr3fu</recordid><startdate>20221123</startdate><enddate>20221123</enddate><creator>Yu, Panlong</creator><creator>Zhu, Xiaoxiang</creator><creator>Bai, Jialin</creator><creator>Zhang, Hanzhuang</creator><creator>Ji, Wenyu</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2932-5119</orcidid></search><sort><creationdate>20221123</creationdate><title>Calibrating the Hole Mobility Measurements Implemented by Transient Electroluminescence Technology</title><author>Yu, Panlong ; Zhu, Xiaoxiang ; Bai, Jialin ; Zhang, Hanzhuang ; Ji, Wenyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-6156d6c1677ee40d2c480b1ddca77320840d9079aeb46194971fd9eb5474a2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Organic Electronic Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Panlong</creatorcontrib><creatorcontrib>Zhu, Xiaoxiang</creatorcontrib><creatorcontrib>Bai, Jialin</creatorcontrib><creatorcontrib>Zhang, Hanzhuang</creatorcontrib><creatorcontrib>Ji, Wenyu</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Panlong</au><au>Zhu, Xiaoxiang</au><au>Bai, Jialin</au><au>Zhang, Hanzhuang</au><au>Ji, Wenyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calibrating the Hole Mobility Measurements Implemented by Transient Electroluminescence Technology</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-11-23</date><risdate>2022</risdate><volume>14</volume><issue>46</issue><spage>52253</spage><epage>52261</epage><pages>52253-52261</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>To date, measuring the carrier mobility in semiconductor films, especially for the amorphous organic small-molecule films, is still a big challenge. Here, we demonstrate that transient electroluminescence (TrEL) spectroscopy with quantum-dot light-emitting diodes as the platform is a feasible and reliable method to evaluate the carrier mobility of such amorphous films. The position of the exciton formation zone is precisely determined and controlled by employing a quantum dot monolayer as the emissive layer. The electrical field intensity across the organic layer is evaluated through the charge density at the electrode calculated by the transient current. Then, the charge carrier mobility is obtained by combining the electroluminescence (EL) delay time and the thickness of the organic layer. Additionally, we demonstrate that the large roughness of the organic layer leads to serious charge accumulation and, hence, a high localized electrical field, which provides preferred charge injection paths, reducing the EL delay time and underestimating the EL delay time. Therefore, a thick organic film is the prerequisite for a reliable measurement of charge carrier mobility, which can circumvent the negative effect of film roughness.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.2c14507</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2932-5119</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-11, Vol.14 (46), p.52253-52261
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2734168481
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Organic Electronic Devices
title Calibrating the Hole Mobility Measurements Implemented by Transient Electroluminescence Technology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A42%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calibrating%20the%20Hole%20Mobility%20Measurements%20Implemented%20by%20Transient%20Electroluminescence%20Technology&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Yu,%20Panlong&rft.date=2022-11-23&rft.volume=14&rft.issue=46&rft.spage=52253&rft.epage=52261&rft.pages=52253-52261&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c14507&rft_dat=%3Cproquest_cross%3E2734168481%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a307t-6156d6c1677ee40d2c480b1ddca77320840d9079aeb46194971fd9eb5474a2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2734168481&rft_id=info:pmid/&rfr_iscdi=true