Loading…

Inhibiting creep in nanograined alloys with stable grain boundary networks

Creep, the time-dependent deformation of materials stressed below the yield strength, is responsible for a great number of component failures at high temperatures. Because grain boundaries (GBs) in materials usually facilitate diffusional processes in creep, eliminating GBs is a primary approach to...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2022-11, Vol.378 (6620), p.659-663
Main Authors: Zhang, B B, Tang, Y G, Mei, Q S, Li, X Y, Lu, K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-9968f8c925dc5c30659205a50ed033522523ac20df7decd5a3fc974c5a0703ca3
cites cdi_FETCH-LOGICAL-c325t-9968f8c925dc5c30659205a50ed033522523ac20df7decd5a3fc974c5a0703ca3
container_end_page 663
container_issue 6620
container_start_page 659
container_title Science (American Association for the Advancement of Science)
container_volume 378
creator Zhang, B B
Tang, Y G
Mei, Q S
Li, X Y
Lu, K
description Creep, the time-dependent deformation of materials stressed below the yield strength, is responsible for a great number of component failures at high temperatures. Because grain boundaries (GBs) in materials usually facilitate diffusional processes in creep, eliminating GBs is a primary approach to resisting high-temperature creep in metals, such as in single-crystal superalloy turbo blades. We report a different strategy to inhibiting creep by use of stable GB networks. Plastic deformation triggered structural relaxation of high-density GBs in nanograined single-phased nickel-cobalt-chromium alloys, forming networks of stable GBs interlocked with abundant twin boundaries. The stable GB networks effectively inhibit diffusional creep processes at high temperatures. We obtained an unprecedented creep resistance, with creep rates of ~10 per second under gigapascal stress at 700°C (~61% melting point), outperforming that of conventional superalloys.
doi_str_mv 10.1126/science.abq7739
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2735867518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2735187392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-9968f8c925dc5c30659205a50ed033522523ac20df7decd5a3fc974c5a0703ca3</originalsourceid><addsrcrecordid>eNpdkDtPwzAURi0EoqUwsyFLLCxp_ajjeEQVj6JKLDBHju20Lqnd2omq_ntMGxiY7vCd--neA8AtRmOMST6JyhqnzFhWO86pOANDjATLBEH0HAwRonlWIM4G4CrGNUIpE_QSDGhOWY6neAje5m5lK9tat4QqGLOF1kEnnV8GaZ3RUDaNP0S4t-0KxlZWjYHHCFa-c1qGA3Sm3fvwFa_BRS2baG76OQKfz08fs9ds8f4ynz0uMkUJazMh8qIulCBMK6Yoylm6lkmGjEaUMkIYoVIRpGuujdJM0loJPlVMIo6oknQEHk692-B3nYltubFRmaaRzvguloRTVuSc4SKh9__Qte-CS9cdKVwkZyRRkxOlgo8xmLrcBrtJr5UYlT-ay15z2WtOG3d9b1dtjP7jf73Sb0wOepY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2735187392</pqid></control><display><type>article</type><title>Inhibiting creep in nanograined alloys with stable grain boundary networks</title><source>Alma/SFX Local Collection</source><source>Science Online科学在线</source><creator>Zhang, B B ; Tang, Y G ; Mei, Q S ; Li, X Y ; Lu, K</creator><creatorcontrib>Zhang, B B ; Tang, Y G ; Mei, Q S ; Li, X Y ; Lu, K</creatorcontrib><description>Creep, the time-dependent deformation of materials stressed below the yield strength, is responsible for a great number of component failures at high temperatures. Because grain boundaries (GBs) in materials usually facilitate diffusional processes in creep, eliminating GBs is a primary approach to resisting high-temperature creep in metals, such as in single-crystal superalloy turbo blades. We report a different strategy to inhibiting creep by use of stable GB networks. Plastic deformation triggered structural relaxation of high-density GBs in nanograined single-phased nickel-cobalt-chromium alloys, forming networks of stable GBs interlocked with abundant twin boundaries. The stable GB networks effectively inhibit diffusional creep processes at high temperatures. We obtained an unprecedented creep resistance, with creep rates of ~10 per second under gigapascal stress at 700°C (~61% melting point), outperforming that of conventional superalloys.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abq7739</identifier><identifier>PMID: 36356141</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Alloys ; Creep strength ; Crystals ; Entropy ; Grain boundaries ; Heat resistance ; Heat resistant alloys ; High temperature ; Single crystals</subject><ispartof>Science (American Association for the Advancement of Science), 2022-11, Vol.378 (6620), p.659-663</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-9968f8c925dc5c30659205a50ed033522523ac20df7decd5a3fc974c5a0703ca3</citedby><cites>FETCH-LOGICAL-c325t-9968f8c925dc5c30659205a50ed033522523ac20df7decd5a3fc974c5a0703ca3</cites><orcidid>0000-0002-6398-4700 ; 0000-0001-5763-9145 ; 0000-0001-7622-9125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36356141$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, B B</creatorcontrib><creatorcontrib>Tang, Y G</creatorcontrib><creatorcontrib>Mei, Q S</creatorcontrib><creatorcontrib>Li, X Y</creatorcontrib><creatorcontrib>Lu, K</creatorcontrib><title>Inhibiting creep in nanograined alloys with stable grain boundary networks</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Creep, the time-dependent deformation of materials stressed below the yield strength, is responsible for a great number of component failures at high temperatures. Because grain boundaries (GBs) in materials usually facilitate diffusional processes in creep, eliminating GBs is a primary approach to resisting high-temperature creep in metals, such as in single-crystal superalloy turbo blades. We report a different strategy to inhibiting creep by use of stable GB networks. Plastic deformation triggered structural relaxation of high-density GBs in nanograined single-phased nickel-cobalt-chromium alloys, forming networks of stable GBs interlocked with abundant twin boundaries. The stable GB networks effectively inhibit diffusional creep processes at high temperatures. We obtained an unprecedented creep resistance, with creep rates of ~10 per second under gigapascal stress at 700°C (~61% melting point), outperforming that of conventional superalloys.</description><subject>Alloys</subject><subject>Creep strength</subject><subject>Crystals</subject><subject>Entropy</subject><subject>Grain boundaries</subject><subject>Heat resistance</subject><subject>Heat resistant alloys</subject><subject>High temperature</subject><subject>Single crystals</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkDtPwzAURi0EoqUwsyFLLCxp_ajjeEQVj6JKLDBHju20Lqnd2omq_ntMGxiY7vCd--neA8AtRmOMST6JyhqnzFhWO86pOANDjATLBEH0HAwRonlWIM4G4CrGNUIpE_QSDGhOWY6neAje5m5lK9tat4QqGLOF1kEnnV8GaZ3RUDaNP0S4t-0KxlZWjYHHCFa-c1qGA3Sm3fvwFa_BRS2baG76OQKfz08fs9ds8f4ynz0uMkUJazMh8qIulCBMK6Yoylm6lkmGjEaUMkIYoVIRpGuujdJM0loJPlVMIo6oknQEHk692-B3nYltubFRmaaRzvguloRTVuSc4SKh9__Qte-CS9cdKVwkZyRRkxOlgo8xmLrcBrtJr5UYlT-ay15z2WtOG3d9b1dtjP7jf73Sb0wOepY</recordid><startdate>20221111</startdate><enddate>20221111</enddate><creator>Zhang, B B</creator><creator>Tang, Y G</creator><creator>Mei, Q S</creator><creator>Li, X Y</creator><creator>Lu, K</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6398-4700</orcidid><orcidid>https://orcid.org/0000-0001-5763-9145</orcidid><orcidid>https://orcid.org/0000-0001-7622-9125</orcidid></search><sort><creationdate>20221111</creationdate><title>Inhibiting creep in nanograined alloys with stable grain boundary networks</title><author>Zhang, B B ; Tang, Y G ; Mei, Q S ; Li, X Y ; Lu, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-9968f8c925dc5c30659205a50ed033522523ac20df7decd5a3fc974c5a0703ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloys</topic><topic>Creep strength</topic><topic>Crystals</topic><topic>Entropy</topic><topic>Grain boundaries</topic><topic>Heat resistance</topic><topic>Heat resistant alloys</topic><topic>High temperature</topic><topic>Single crystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, B B</creatorcontrib><creatorcontrib>Tang, Y G</creatorcontrib><creatorcontrib>Mei, Q S</creatorcontrib><creatorcontrib>Li, X Y</creatorcontrib><creatorcontrib>Lu, K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, B B</au><au>Tang, Y G</au><au>Mei, Q S</au><au>Li, X Y</au><au>Lu, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibiting creep in nanograined alloys with stable grain boundary networks</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2022-11-11</date><risdate>2022</risdate><volume>378</volume><issue>6620</issue><spage>659</spage><epage>663</epage><pages>659-663</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Creep, the time-dependent deformation of materials stressed below the yield strength, is responsible for a great number of component failures at high temperatures. Because grain boundaries (GBs) in materials usually facilitate diffusional processes in creep, eliminating GBs is a primary approach to resisting high-temperature creep in metals, such as in single-crystal superalloy turbo blades. We report a different strategy to inhibiting creep by use of stable GB networks. Plastic deformation triggered structural relaxation of high-density GBs in nanograined single-phased nickel-cobalt-chromium alloys, forming networks of stable GBs interlocked with abundant twin boundaries. The stable GB networks effectively inhibit diffusional creep processes at high temperatures. We obtained an unprecedented creep resistance, with creep rates of ~10 per second under gigapascal stress at 700°C (~61% melting point), outperforming that of conventional superalloys.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>36356141</pmid><doi>10.1126/science.abq7739</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6398-4700</orcidid><orcidid>https://orcid.org/0000-0001-5763-9145</orcidid><orcidid>https://orcid.org/0000-0001-7622-9125</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2022-11, Vol.378 (6620), p.659-663
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2735867518
source Alma/SFX Local Collection; Science Online科学在线
subjects Alloys
Creep strength
Crystals
Entropy
Grain boundaries
Heat resistance
Heat resistant alloys
High temperature
Single crystals
title Inhibiting creep in nanograined alloys with stable grain boundary networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T08%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibiting%20creep%20in%20nanograined%20alloys%20with%20stable%20grain%20boundary%20networks&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Zhang,%20B%20B&rft.date=2022-11-11&rft.volume=378&rft.issue=6620&rft.spage=659&rft.epage=663&rft.pages=659-663&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abq7739&rft_dat=%3Cproquest_cross%3E2735187392%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-9968f8c925dc5c30659205a50ed033522523ac20df7decd5a3fc974c5a0703ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2735187392&rft_id=info:pmid/36356141&rfr_iscdi=true