Loading…
Inhibiting creep in nanograined alloys with stable grain boundary networks
Creep, the time-dependent deformation of materials stressed below the yield strength, is responsible for a great number of component failures at high temperatures. Because grain boundaries (GBs) in materials usually facilitate diffusional processes in creep, eliminating GBs is a primary approach to...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2022-11, Vol.378 (6620), p.659-663 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c325t-9968f8c925dc5c30659205a50ed033522523ac20df7decd5a3fc974c5a0703ca3 |
---|---|
cites | cdi_FETCH-LOGICAL-c325t-9968f8c925dc5c30659205a50ed033522523ac20df7decd5a3fc974c5a0703ca3 |
container_end_page | 663 |
container_issue | 6620 |
container_start_page | 659 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 378 |
creator | Zhang, B B Tang, Y G Mei, Q S Li, X Y Lu, K |
description | Creep, the time-dependent deformation of materials stressed below the yield strength, is responsible for a great number of component failures at high temperatures. Because grain boundaries (GBs) in materials usually facilitate diffusional processes in creep, eliminating GBs is a primary approach to resisting high-temperature creep in metals, such as in single-crystal superalloy turbo blades. We report a different strategy to inhibiting creep by use of stable GB networks. Plastic deformation triggered structural relaxation of high-density GBs in nanograined single-phased nickel-cobalt-chromium alloys, forming networks of stable GBs interlocked with abundant twin boundaries. The stable GB networks effectively inhibit diffusional creep processes at high temperatures. We obtained an unprecedented creep resistance, with creep rates of ~10
per second under gigapascal stress at 700°C (~61% melting point), outperforming that of conventional superalloys. |
doi_str_mv | 10.1126/science.abq7739 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2735867518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2735187392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-9968f8c925dc5c30659205a50ed033522523ac20df7decd5a3fc974c5a0703ca3</originalsourceid><addsrcrecordid>eNpdkDtPwzAURi0EoqUwsyFLLCxp_ajjeEQVj6JKLDBHju20Lqnd2omq_ntMGxiY7vCd--neA8AtRmOMST6JyhqnzFhWO86pOANDjATLBEH0HAwRonlWIM4G4CrGNUIpE_QSDGhOWY6neAje5m5lK9tat4QqGLOF1kEnnV8GaZ3RUDaNP0S4t-0KxlZWjYHHCFa-c1qGA3Sm3fvwFa_BRS2baG76OQKfz08fs9ds8f4ynz0uMkUJazMh8qIulCBMK6Yoylm6lkmGjEaUMkIYoVIRpGuujdJM0loJPlVMIo6oknQEHk692-B3nYltubFRmaaRzvguloRTVuSc4SKh9__Qte-CS9cdKVwkZyRRkxOlgo8xmLrcBrtJr5UYlT-ay15z2WtOG3d9b1dtjP7jf73Sb0wOepY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2735187392</pqid></control><display><type>article</type><title>Inhibiting creep in nanograined alloys with stable grain boundary networks</title><source>Alma/SFX Local Collection</source><source>Science Online科学在线</source><creator>Zhang, B B ; Tang, Y G ; Mei, Q S ; Li, X Y ; Lu, K</creator><creatorcontrib>Zhang, B B ; Tang, Y G ; Mei, Q S ; Li, X Y ; Lu, K</creatorcontrib><description>Creep, the time-dependent deformation of materials stressed below the yield strength, is responsible for a great number of component failures at high temperatures. Because grain boundaries (GBs) in materials usually facilitate diffusional processes in creep, eliminating GBs is a primary approach to resisting high-temperature creep in metals, such as in single-crystal superalloy turbo blades. We report a different strategy to inhibiting creep by use of stable GB networks. Plastic deformation triggered structural relaxation of high-density GBs in nanograined single-phased nickel-cobalt-chromium alloys, forming networks of stable GBs interlocked with abundant twin boundaries. The stable GB networks effectively inhibit diffusional creep processes at high temperatures. We obtained an unprecedented creep resistance, with creep rates of ~10
per second under gigapascal stress at 700°C (~61% melting point), outperforming that of conventional superalloys.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abq7739</identifier><identifier>PMID: 36356141</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Alloys ; Creep strength ; Crystals ; Entropy ; Grain boundaries ; Heat resistance ; Heat resistant alloys ; High temperature ; Single crystals</subject><ispartof>Science (American Association for the Advancement of Science), 2022-11, Vol.378 (6620), p.659-663</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-9968f8c925dc5c30659205a50ed033522523ac20df7decd5a3fc974c5a0703ca3</citedby><cites>FETCH-LOGICAL-c325t-9968f8c925dc5c30659205a50ed033522523ac20df7decd5a3fc974c5a0703ca3</cites><orcidid>0000-0002-6398-4700 ; 0000-0001-5763-9145 ; 0000-0001-7622-9125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36356141$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, B B</creatorcontrib><creatorcontrib>Tang, Y G</creatorcontrib><creatorcontrib>Mei, Q S</creatorcontrib><creatorcontrib>Li, X Y</creatorcontrib><creatorcontrib>Lu, K</creatorcontrib><title>Inhibiting creep in nanograined alloys with stable grain boundary networks</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Creep, the time-dependent deformation of materials stressed below the yield strength, is responsible for a great number of component failures at high temperatures. Because grain boundaries (GBs) in materials usually facilitate diffusional processes in creep, eliminating GBs is a primary approach to resisting high-temperature creep in metals, such as in single-crystal superalloy turbo blades. We report a different strategy to inhibiting creep by use of stable GB networks. Plastic deformation triggered structural relaxation of high-density GBs in nanograined single-phased nickel-cobalt-chromium alloys, forming networks of stable GBs interlocked with abundant twin boundaries. The stable GB networks effectively inhibit diffusional creep processes at high temperatures. We obtained an unprecedented creep resistance, with creep rates of ~10
per second under gigapascal stress at 700°C (~61% melting point), outperforming that of conventional superalloys.</description><subject>Alloys</subject><subject>Creep strength</subject><subject>Crystals</subject><subject>Entropy</subject><subject>Grain boundaries</subject><subject>Heat resistance</subject><subject>Heat resistant alloys</subject><subject>High temperature</subject><subject>Single crystals</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkDtPwzAURi0EoqUwsyFLLCxp_ajjeEQVj6JKLDBHju20Lqnd2omq_ntMGxiY7vCd--neA8AtRmOMST6JyhqnzFhWO86pOANDjATLBEH0HAwRonlWIM4G4CrGNUIpE_QSDGhOWY6neAje5m5lK9tat4QqGLOF1kEnnV8GaZ3RUDaNP0S4t-0KxlZWjYHHCFa-c1qGA3Sm3fvwFa_BRS2baG76OQKfz08fs9ds8f4ynz0uMkUJazMh8qIulCBMK6Yoylm6lkmGjEaUMkIYoVIRpGuujdJM0loJPlVMIo6oknQEHk692-B3nYltubFRmaaRzvguloRTVuSc4SKh9__Qte-CS9cdKVwkZyRRkxOlgo8xmLrcBrtJr5UYlT-ay15z2WtOG3d9b1dtjP7jf73Sb0wOepY</recordid><startdate>20221111</startdate><enddate>20221111</enddate><creator>Zhang, B B</creator><creator>Tang, Y G</creator><creator>Mei, Q S</creator><creator>Li, X Y</creator><creator>Lu, K</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6398-4700</orcidid><orcidid>https://orcid.org/0000-0001-5763-9145</orcidid><orcidid>https://orcid.org/0000-0001-7622-9125</orcidid></search><sort><creationdate>20221111</creationdate><title>Inhibiting creep in nanograined alloys with stable grain boundary networks</title><author>Zhang, B B ; Tang, Y G ; Mei, Q S ; Li, X Y ; Lu, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-9968f8c925dc5c30659205a50ed033522523ac20df7decd5a3fc974c5a0703ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloys</topic><topic>Creep strength</topic><topic>Crystals</topic><topic>Entropy</topic><topic>Grain boundaries</topic><topic>Heat resistance</topic><topic>Heat resistant alloys</topic><topic>High temperature</topic><topic>Single crystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, B B</creatorcontrib><creatorcontrib>Tang, Y G</creatorcontrib><creatorcontrib>Mei, Q S</creatorcontrib><creatorcontrib>Li, X Y</creatorcontrib><creatorcontrib>Lu, K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, B B</au><au>Tang, Y G</au><au>Mei, Q S</au><au>Li, X Y</au><au>Lu, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibiting creep in nanograined alloys with stable grain boundary networks</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2022-11-11</date><risdate>2022</risdate><volume>378</volume><issue>6620</issue><spage>659</spage><epage>663</epage><pages>659-663</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Creep, the time-dependent deformation of materials stressed below the yield strength, is responsible for a great number of component failures at high temperatures. Because grain boundaries (GBs) in materials usually facilitate diffusional processes in creep, eliminating GBs is a primary approach to resisting high-temperature creep in metals, such as in single-crystal superalloy turbo blades. We report a different strategy to inhibiting creep by use of stable GB networks. Plastic deformation triggered structural relaxation of high-density GBs in nanograined single-phased nickel-cobalt-chromium alloys, forming networks of stable GBs interlocked with abundant twin boundaries. The stable GB networks effectively inhibit diffusional creep processes at high temperatures. We obtained an unprecedented creep resistance, with creep rates of ~10
per second under gigapascal stress at 700°C (~61% melting point), outperforming that of conventional superalloys.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>36356141</pmid><doi>10.1126/science.abq7739</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6398-4700</orcidid><orcidid>https://orcid.org/0000-0001-5763-9145</orcidid><orcidid>https://orcid.org/0000-0001-7622-9125</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2022-11, Vol.378 (6620), p.659-663 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2735867518 |
source | Alma/SFX Local Collection; Science Online科学在线 |
subjects | Alloys Creep strength Crystals Entropy Grain boundaries Heat resistance Heat resistant alloys High temperature Single crystals |
title | Inhibiting creep in nanograined alloys with stable grain boundary networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T08%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibiting%20creep%20in%20nanograined%20alloys%20with%20stable%20grain%20boundary%20networks&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Zhang,%20B%20B&rft.date=2022-11-11&rft.volume=378&rft.issue=6620&rft.spage=659&rft.epage=663&rft.pages=659-663&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abq7739&rft_dat=%3Cproquest_cross%3E2735187392%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-9968f8c925dc5c30659205a50ed033522523ac20df7decd5a3fc974c5a0703ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2735187392&rft_id=info:pmid/36356141&rfr_iscdi=true |