Loading…

Highly Flexible K‐Intercalated MnO2/Carbon Membrane for High‐Performance Aqueous Zinc‐Ion Battery Cathode

The layered MnO2 is intensively investigated as one of the most promising cathode materials for aqueous zinc‐ion batteries (AZIBs), but its commercialization is severely impeded by the challenging issues of the inferior intrinsic electronic conductivity and undesirable structural stability during th...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-01, Vol.19 (1), p.e2205544-n/a
Main Authors: Yang, Jie, Yao, Ge, Li, Zhiqiang, Zhang, Yuhang, Wei, Lingzhi, Niu, Helin, Chen, Qianwang, Zheng, Fangcai
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 1
container_start_page e2205544
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 19
creator Yang, Jie
Yao, Ge
Li, Zhiqiang
Zhang, Yuhang
Wei, Lingzhi
Niu, Helin
Chen, Qianwang
Zheng, Fangcai
description The layered MnO2 is intensively investigated as one of the most promising cathode materials for aqueous zinc‐ion batteries (AZIBs), but its commercialization is severely impeded by the challenging issues of the inferior intrinsic electronic conductivity and undesirable structural stability during the charge–discharge cycles. Herein, the lab‐prepared flexible carbon membrane with highly electrical conductivity is first used as the matrix to generate ultrathin δ‐MnO2 with an enlarged interlayer spacing induced by the K+‐intercalation to potentially alleviate the structural damage caused by H+/Zn2+ co‐intercalation, resulting in a high reversible capacity of 190 mAh g−1 at 3 A g−1 over 1000 cycles. The in situ/ex‐situ characterizations and electrochemical analysis confirm that the enlarged interlayer spacing can provide free space for the reversible deintercalation/intercalation of H+/Zn2+ in the structure of δ‐MnO2, and H+/Zn2+ co‐intercalation mechanism contributes to the enhanced charge storage in the layered K+‐intercalated δ‐MnO2. This work provides a plausible way to construct a flexible carbon membrane‐based cathode for high‐performance AZIBs. Herein, the lab‐prepared flexible carbon membrane is taken as the matrix to generate ultrathin K+‐intercalated δ‐MnO2 (denoted as KMO/CNFs). The K+‐intercalated δ‐MnO2 provides an enhanced interlayer spacing to alleviate the structural damage caused by H+/Zn2+ intercalation, and the flexible carbon membrane promotes the electron conduction, resulting in enhanced reaction kinetics and cycling stability in aqueous electrolyte.
doi_str_mv 10.1002/smll.202205544
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2736663425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2736663425</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2664-a151f902d79cb7ea3bc3d9de24b55de972f5798b9df3a2db64dc50ac88fa0ac3</originalsourceid><addsrcrecordid>eNpdkL9OwzAYxC0EEqWwMltiYUnr_0lGiCitSFUkOrFEju3QVE5SnFSQjUfgGXkSHBV1YLrvk353Oh0A1xhNMEJk2lbWTggiBHHO2AkYYYFpICISnx5vjM7BRdtuEaKYsHAEmnn5trE9nFnzWebWwKefr-9F3RmnpJWd0XBZr8g0kS5varg0Ve5kbWDRODg4PfxsnP8qWSsD7973ptm38LWs1ZDjLfey82E9TGS3abS5BGeFtK25-tMxWM8e1sk8SFePi-QuDXZECBZIzHERI6LDWOWhkTRXVMfaEJZzrk0ckoKHcZTHuqCS6FwwrTiSKooK6YWOwe0hduca36ntsqpslbHWl_cFMxJSIQRlhHv05h-6bfau9uU8JZCIWMQHKj5QH6U1fbZzZSVdn2GUDdtnw_bZcfvsZZmmx4_-AlY8fkM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760684855</pqid></control><display><type>article</type><title>Highly Flexible K‐Intercalated MnO2/Carbon Membrane for High‐Performance Aqueous Zinc‐Ion Battery Cathode</title><source>Wiley</source><creator>Yang, Jie ; Yao, Ge ; Li, Zhiqiang ; Zhang, Yuhang ; Wei, Lingzhi ; Niu, Helin ; Chen, Qianwang ; Zheng, Fangcai</creator><creatorcontrib>Yang, Jie ; Yao, Ge ; Li, Zhiqiang ; Zhang, Yuhang ; Wei, Lingzhi ; Niu, Helin ; Chen, Qianwang ; Zheng, Fangcai</creatorcontrib><description>The layered MnO2 is intensively investigated as one of the most promising cathode materials for aqueous zinc‐ion batteries (AZIBs), but its commercialization is severely impeded by the challenging issues of the inferior intrinsic electronic conductivity and undesirable structural stability during the charge–discharge cycles. Herein, the lab‐prepared flexible carbon membrane with highly electrical conductivity is first used as the matrix to generate ultrathin δ‐MnO2 with an enlarged interlayer spacing induced by the K+‐intercalation to potentially alleviate the structural damage caused by H+/Zn2+ co‐intercalation, resulting in a high reversible capacity of 190 mAh g−1 at 3 A g−1 over 1000 cycles. The in situ/ex‐situ characterizations and electrochemical analysis confirm that the enlarged interlayer spacing can provide free space for the reversible deintercalation/intercalation of H+/Zn2+ in the structure of δ‐MnO2, and H+/Zn2+ co‐intercalation mechanism contributes to the enhanced charge storage in the layered K+‐intercalated δ‐MnO2. This work provides a plausible way to construct a flexible carbon membrane‐based cathode for high‐performance AZIBs. Herein, the lab‐prepared flexible carbon membrane is taken as the matrix to generate ultrathin K+‐intercalated δ‐MnO2 (denoted as KMO/CNFs). The K+‐intercalated δ‐MnO2 provides an enhanced interlayer spacing to alleviate the structural damage caused by H+/Zn2+ intercalation, and the flexible carbon membrane promotes the electron conduction, resulting in enhanced reaction kinetics and cycling stability in aqueous electrolyte.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202205544</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon ; carbon membranes ; Cathodes ; Commercialization ; Electrical resistivity ; Electrochemical analysis ; Electrode materials ; flexible electrodes ; Intercalation ; Interlayers ; K ion intercalation ; Manganese dioxide ; Membranes ; MnO 2 ; Nanotechnology ; Structural damage ; Structural stability ; Zinc ; zinc‐ion batteries</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-01, Vol.19 (1), p.e2205544-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6012-7957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Yao, Ge</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>Zhang, Yuhang</creatorcontrib><creatorcontrib>Wei, Lingzhi</creatorcontrib><creatorcontrib>Niu, Helin</creatorcontrib><creatorcontrib>Chen, Qianwang</creatorcontrib><creatorcontrib>Zheng, Fangcai</creatorcontrib><title>Highly Flexible K‐Intercalated MnO2/Carbon Membrane for High‐Performance Aqueous Zinc‐Ion Battery Cathode</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>The layered MnO2 is intensively investigated as one of the most promising cathode materials for aqueous zinc‐ion batteries (AZIBs), but its commercialization is severely impeded by the challenging issues of the inferior intrinsic electronic conductivity and undesirable structural stability during the charge–discharge cycles. Herein, the lab‐prepared flexible carbon membrane with highly electrical conductivity is first used as the matrix to generate ultrathin δ‐MnO2 with an enlarged interlayer spacing induced by the K+‐intercalation to potentially alleviate the structural damage caused by H+/Zn2+ co‐intercalation, resulting in a high reversible capacity of 190 mAh g−1 at 3 A g−1 over 1000 cycles. The in situ/ex‐situ characterizations and electrochemical analysis confirm that the enlarged interlayer spacing can provide free space for the reversible deintercalation/intercalation of H+/Zn2+ in the structure of δ‐MnO2, and H+/Zn2+ co‐intercalation mechanism contributes to the enhanced charge storage in the layered K+‐intercalated δ‐MnO2. This work provides a plausible way to construct a flexible carbon membrane‐based cathode for high‐performance AZIBs. Herein, the lab‐prepared flexible carbon membrane is taken as the matrix to generate ultrathin K+‐intercalated δ‐MnO2 (denoted as KMO/CNFs). The K+‐intercalated δ‐MnO2 provides an enhanced interlayer spacing to alleviate the structural damage caused by H+/Zn2+ intercalation, and the flexible carbon membrane promotes the electron conduction, resulting in enhanced reaction kinetics and cycling stability in aqueous electrolyte.</description><subject>Carbon</subject><subject>carbon membranes</subject><subject>Cathodes</subject><subject>Commercialization</subject><subject>Electrical resistivity</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>flexible electrodes</subject><subject>Intercalation</subject><subject>Interlayers</subject><subject>K ion intercalation</subject><subject>Manganese dioxide</subject><subject>Membranes</subject><subject>MnO 2</subject><subject>Nanotechnology</subject><subject>Structural damage</subject><subject>Structural stability</subject><subject>Zinc</subject><subject>zinc‐ion batteries</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkL9OwzAYxC0EEqWwMltiYUnr_0lGiCitSFUkOrFEju3QVE5SnFSQjUfgGXkSHBV1YLrvk353Oh0A1xhNMEJk2lbWTggiBHHO2AkYYYFpICISnx5vjM7BRdtuEaKYsHAEmnn5trE9nFnzWebWwKefr-9F3RmnpJWd0XBZr8g0kS5varg0Ve5kbWDRODg4PfxsnP8qWSsD7973ptm38LWs1ZDjLfey82E9TGS3abS5BGeFtK25-tMxWM8e1sk8SFePi-QuDXZECBZIzHERI6LDWOWhkTRXVMfaEJZzrk0ckoKHcZTHuqCS6FwwrTiSKooK6YWOwe0hduca36ntsqpslbHWl_cFMxJSIQRlhHv05h-6bfau9uU8JZCIWMQHKj5QH6U1fbZzZSVdn2GUDdtnw_bZcfvsZZmmx4_-AlY8fkM</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Yang, Jie</creator><creator>Yao, Ge</creator><creator>Li, Zhiqiang</creator><creator>Zhang, Yuhang</creator><creator>Wei, Lingzhi</creator><creator>Niu, Helin</creator><creator>Chen, Qianwang</creator><creator>Zheng, Fangcai</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6012-7957</orcidid></search><sort><creationdate>20230101</creationdate><title>Highly Flexible K‐Intercalated MnO2/Carbon Membrane for High‐Performance Aqueous Zinc‐Ion Battery Cathode</title><author>Yang, Jie ; Yao, Ge ; Li, Zhiqiang ; Zhang, Yuhang ; Wei, Lingzhi ; Niu, Helin ; Chen, Qianwang ; Zheng, Fangcai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2664-a151f902d79cb7ea3bc3d9de24b55de972f5798b9df3a2db64dc50ac88fa0ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon</topic><topic>carbon membranes</topic><topic>Cathodes</topic><topic>Commercialization</topic><topic>Electrical resistivity</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>flexible electrodes</topic><topic>Intercalation</topic><topic>Interlayers</topic><topic>K ion intercalation</topic><topic>Manganese dioxide</topic><topic>Membranes</topic><topic>MnO 2</topic><topic>Nanotechnology</topic><topic>Structural damage</topic><topic>Structural stability</topic><topic>Zinc</topic><topic>zinc‐ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Yao, Ge</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>Zhang, Yuhang</creatorcontrib><creatorcontrib>Wei, Lingzhi</creatorcontrib><creatorcontrib>Niu, Helin</creatorcontrib><creatorcontrib>Chen, Qianwang</creatorcontrib><creatorcontrib>Zheng, Fangcai</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jie</au><au>Yao, Ge</au><au>Li, Zhiqiang</au><au>Zhang, Yuhang</au><au>Wei, Lingzhi</au><au>Niu, Helin</au><au>Chen, Qianwang</au><au>Zheng, Fangcai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Flexible K‐Intercalated MnO2/Carbon Membrane for High‐Performance Aqueous Zinc‐Ion Battery Cathode</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>19</volume><issue>1</issue><spage>e2205544</spage><epage>n/a</epage><pages>e2205544-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>The layered MnO2 is intensively investigated as one of the most promising cathode materials for aqueous zinc‐ion batteries (AZIBs), but its commercialization is severely impeded by the challenging issues of the inferior intrinsic electronic conductivity and undesirable structural stability during the charge–discharge cycles. Herein, the lab‐prepared flexible carbon membrane with highly electrical conductivity is first used as the matrix to generate ultrathin δ‐MnO2 with an enlarged interlayer spacing induced by the K+‐intercalation to potentially alleviate the structural damage caused by H+/Zn2+ co‐intercalation, resulting in a high reversible capacity of 190 mAh g−1 at 3 A g−1 over 1000 cycles. The in situ/ex‐situ characterizations and electrochemical analysis confirm that the enlarged interlayer spacing can provide free space for the reversible deintercalation/intercalation of H+/Zn2+ in the structure of δ‐MnO2, and H+/Zn2+ co‐intercalation mechanism contributes to the enhanced charge storage in the layered K+‐intercalated δ‐MnO2. This work provides a plausible way to construct a flexible carbon membrane‐based cathode for high‐performance AZIBs. Herein, the lab‐prepared flexible carbon membrane is taken as the matrix to generate ultrathin K+‐intercalated δ‐MnO2 (denoted as KMO/CNFs). The K+‐intercalated δ‐MnO2 provides an enhanced interlayer spacing to alleviate the structural damage caused by H+/Zn2+ intercalation, and the flexible carbon membrane promotes the electron conduction, resulting in enhanced reaction kinetics and cycling stability in aqueous electrolyte.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202205544</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6012-7957</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2023-01, Vol.19 (1), p.e2205544-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2736663425
source Wiley
subjects Carbon
carbon membranes
Cathodes
Commercialization
Electrical resistivity
Electrochemical analysis
Electrode materials
flexible electrodes
Intercalation
Interlayers
K ion intercalation
Manganese dioxide
Membranes
MnO 2
Nanotechnology
Structural damage
Structural stability
Zinc
zinc‐ion batteries
title Highly Flexible K‐Intercalated MnO2/Carbon Membrane for High‐Performance Aqueous Zinc‐Ion Battery Cathode
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A47%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Flexible%20K%E2%80%90Intercalated%20MnO2/Carbon%20Membrane%20for%20High%E2%80%90Performance%20Aqueous%20Zinc%E2%80%90Ion%20Battery%20Cathode&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Yang,%20Jie&rft.date=2023-01-01&rft.volume=19&rft.issue=1&rft.spage=e2205544&rft.epage=n/a&rft.pages=e2205544-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202205544&rft_dat=%3Cproquest_wiley%3E2736663425%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2664-a151f902d79cb7ea3bc3d9de24b55de972f5798b9df3a2db64dc50ac88fa0ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2760684855&rft_id=info:pmid/&rfr_iscdi=true