Loading…
From Biomass to Functional Crystalline Diamond Nanothread: Pressure-Induced Polymerization of 2,5-Furandicarboxylic Acid
2,5-Furandicarboxylic acid (FDCA) is one of the top-12 value-added chemicals from sugar. Besides the wide application in chemical industry, here we found that solid FDCA polymerized to form an atomic-scale ordered sp3-carbon nanothread (CNTh) upon compression. With the help of perfectly aligned π–π...
Saved in:
Published in: | Journal of the American Chemical Society 2022-12, Vol.144 (48), p.21837-21842 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 2,5-Furandicarboxylic acid (FDCA) is one of the top-12 value-added chemicals from sugar. Besides the wide application in chemical industry, here we found that solid FDCA polymerized to form an atomic-scale ordered sp3-carbon nanothread (CNTh) upon compression. With the help of perfectly aligned π–π stacked molecules and strong intermolecular hydrogen bonds, crystalline poly-FDCA CNTh with uniform syn-configuration was obtained above 11 GPa, with the crystal structure determined by Rietveld refinement of the X-ray diffraction (XRD). The in situ XRD and theoretical simulation results show that the FDCA experienced continuous [4 + 2] Diels–Alder reactions along the stacking direction at the threshold C···C distance of ∼2.8 Å. Benefiting from the abundant carbonyl groups, the poly-FDCA shows a high specific capacity of 375 mAh g–1 as an anode material of a lithium battery with excellent Coulombic efficiency and rate performance. This is the first time a three-dimensional crystalline CNTh is obtained, and we demonstrated it is the hydrogen bonds that lead to the formation of the crystalline material with a unique configuration. It also provides a new method to move biomass compounds toward advanced functional carbon materials. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.2c08914 |