Loading…
Controlled Self-Assembly of Polystyrene-block-Polydimethylsiloxane for Fabrication of Nanonetwork Silica Monoliths
Herein, this work aims to carry out controlled self-assembly of single-composition block copolymer for the fabrication of various nanonetwork silica monoliths. With the use of lamellae-forming polystyrene-block-polydimethylsiloxane (PS-b-PDMS), nanonetwork-structured films could be fabricated by sol...
Saved in:
Published in: | ACS applied materials & interfaces 2022-12, Vol.14 (48), p.54194-54202 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Herein, this work aims to carry out controlled self-assembly of single-composition block copolymer for the fabrication of various nanonetwork silica monoliths. With the use of lamellae-forming polystyrene-block-polydimethylsiloxane (PS-b-PDMS), nanonetwork-structured films could be fabricated by solvent annealing using a PS-selective solvent (chloroform). By simply tuning the flow rate of nitrogen purge to the PS-selective solvent for the controlled self-assembly of the PS-b-PDMS, gyroid- and diamond-structured monoliths can be formed due to the difference in the effective volume of PS in the PS-b-PDMS during solvent annealing. As a result, well-ordered nanonetwork SiO2 (silica) monoliths can be fabricated by templated sol–gel reaction using hydrofluoric acid etched PS-b-PDMS film as a template followed by the removal of the PS. This bottom-up approach for the fabrication of nanonetwork materials through templated synthesis is appealing to create nanonetwork materials for various applications. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.2c15078 |