Loading…

Mechanical characterization of isolated mitochondria under conditions of oxidative stress

Mechanical properties have been proven to be a pivotal parameter to enhance our understanding of living systems. While research during the last decades focused on cells and tissues, little is known about the role of organelle mechanics in cell function. Here, mitochondria are of specific interest du...

Full description

Saved in:
Bibliographic Details
Published in:Biomicrofluidics 2022-12, Vol.16 (6), p.064101-064101
Main Authors: Komaragiri, Yesaswini, Panhwar, Muzaffar H., Fregin, Bob, Jagirdar, Gayatri, Wolke, Carmen, Spiegler, Stefanie, Otto, Oliver
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c450t-bad673fb9ca53e95901d5a9cb5a4c7b8984e32843c9d8039c25262e69b1c41e73
cites cdi_FETCH-LOGICAL-c450t-bad673fb9ca53e95901d5a9cb5a4c7b8984e32843c9d8039c25262e69b1c41e73
container_end_page 064101
container_issue 6
container_start_page 064101
container_title Biomicrofluidics
container_volume 16
creator Komaragiri, Yesaswini
Panhwar, Muzaffar H.
Fregin, Bob
Jagirdar, Gayatri
Wolke, Carmen
Spiegler, Stefanie
Otto, Oliver
description Mechanical properties have been proven to be a pivotal parameter to enhance our understanding of living systems. While research during the last decades focused on cells and tissues, little is known about the role of organelle mechanics in cell function. Here, mitochondria are of specific interest due to their involvement in numerous physiological and pathological processes, e.g., in the production and homeostasis of reactive oxygen species (ROS). Using real-time fluorescence and deformability cytometry, we present a microfluidic technology that is capable to determine the mechanical properties of individual mitochondria at a throughput exceeding 100 organelles per second. Our data on several thousands of viable mitochondria isolated from rat C6 glial cells yield a homogenous population with a median deformation that scales with the applied hydrodynamic stress. In two proof-of-principle studies, we investigated the impact of exogenously and endogenously produced ROS on mitochondria mechanics. Exposing C6 cells to hydrogen peroxide (H2O2) triggers superoxide production and leads to a reduction in mitochondria size while deformation is increased. In a second study, we focused on the knockout of tafazzin, which has been associated with impaired remodeling of the mitochondrial membrane and elevated levels of ROS. Interestingly, our results reveal the same mechanical alterations as observed after the exposure to H2O2, which points to a unified biophysical mechanism of how mitochondria respond to the presence of oxidative stress. In summary, we introduce high-throughput mechanical phenotyping into the field of organelle biology with potential applications for understanding sub-cellular dynamics that have not been accessible before.
doi_str_mv 10.1063/5.0111581
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2738497058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2738497058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-bad673fb9ca53e95901d5a9cb5a4c7b8984e32843c9d8039c25262e69b1c41e73</originalsourceid><addsrcrecordid>eNp90ctqGzEUBuChpFDH6aJvMJBNE7Cj64y0KQSTS8Glm3aRldBIZ2KZ8ciVNKbp00eOjZsLZKUj9OlHOqcovmA0xaiiF3yKMMZc4A_FCEtKJhhxcfSs_lQcx7hEiOOakFFx9wPMQvfO6K7MRdAmQXD_dHK-L31buug7ncCWK5e8WfjeBqfLobcQSpN3bgvjVvq_zuZrGyhjChDjSfGx1V2Ez_t1XPy-vvo1u53Mf958n13OJ4ZxlCaNtlVN20YazSlILhG2XEvTcM1M3QgpGFAiGDXSCkSlIZxUBCrZYMMw1HRcfNvlrodmBdZAn4Lu1Dq4lQ4PymunXp70bqHu_UbJqmZUiBzwdR8Q_J8BYlIrFw10ne7BD1GRmgom69y7TE9f0aUfQp-_t1U1oUwwltXZTpngYwzQHh6DkdpOSXG1n1K25zsbjUtPXT_gjQ__oVrb9j38NvkRhv-iVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737234844</pqid></control><display><type>article</type><title>Mechanical characterization of isolated mitochondria under conditions of oxidative stress</title><source>Open Access: PubMed Central</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Komaragiri, Yesaswini ; Panhwar, Muzaffar H. ; Fregin, Bob ; Jagirdar, Gayatri ; Wolke, Carmen ; Spiegler, Stefanie ; Otto, Oliver</creator><creatorcontrib>Komaragiri, Yesaswini ; Panhwar, Muzaffar H. ; Fregin, Bob ; Jagirdar, Gayatri ; Wolke, Carmen ; Spiegler, Stefanie ; Otto, Oliver</creatorcontrib><description>Mechanical properties have been proven to be a pivotal parameter to enhance our understanding of living systems. While research during the last decades focused on cells and tissues, little is known about the role of organelle mechanics in cell function. Here, mitochondria are of specific interest due to their involvement in numerous physiological and pathological processes, e.g., in the production and homeostasis of reactive oxygen species (ROS). Using real-time fluorescence and deformability cytometry, we present a microfluidic technology that is capable to determine the mechanical properties of individual mitochondria at a throughput exceeding 100 organelles per second. Our data on several thousands of viable mitochondria isolated from rat C6 glial cells yield a homogenous population with a median deformation that scales with the applied hydrodynamic stress. In two proof-of-principle studies, we investigated the impact of exogenously and endogenously produced ROS on mitochondria mechanics. Exposing C6 cells to hydrogen peroxide (H2O2) triggers superoxide production and leads to a reduction in mitochondria size while deformation is increased. In a second study, we focused on the knockout of tafazzin, which has been associated with impaired remodeling of the mitochondrial membrane and elevated levels of ROS. Interestingly, our results reveal the same mechanical alterations as observed after the exposure to H2O2, which points to a unified biophysical mechanism of how mitochondria respond to the presence of oxidative stress. In summary, we introduce high-throughput mechanical phenotyping into the field of organelle biology with potential applications for understanding sub-cellular dynamics that have not been accessible before.</description><identifier>ISSN: 1932-1058</identifier><identifier>EISSN: 1932-1058</identifier><identifier>DOI: 10.1063/5.0111581</identifier><identifier>CODEN: BIOMGB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cytometry ; Deformation ; Formability ; Homeostasis ; Hydrogen peroxide ; Mechanical properties ; Mechanics (physics) ; Microfluidics ; Mitochondria ; Organelles ; Oxidative stress ; Regular</subject><ispartof>Biomicrofluidics, 2022-12, Vol.16 (6), p.064101-064101</ispartof><rights>Author(s)</rights><rights>2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><rights>2022 Author(s). 2022 Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-bad673fb9ca53e95901d5a9cb5a4c7b8984e32843c9d8039c25262e69b1c41e73</citedby><cites>FETCH-LOGICAL-c450t-bad673fb9ca53e95901d5a9cb5a4c7b8984e32843c9d8039c25262e69b1c41e73</cites><orcidid>0000-0002-7934-3369 ; 0000-0001-6726-6135 ; 0000-0003-0280-5374 ; 0000-0003-0030-4488 ; 0000-0002-7405-2554 ; 0000-0001-8621-1957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674388/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674388/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27898,27899,53763,53765</link.rule.ids></links><search><creatorcontrib>Komaragiri, Yesaswini</creatorcontrib><creatorcontrib>Panhwar, Muzaffar H.</creatorcontrib><creatorcontrib>Fregin, Bob</creatorcontrib><creatorcontrib>Jagirdar, Gayatri</creatorcontrib><creatorcontrib>Wolke, Carmen</creatorcontrib><creatorcontrib>Spiegler, Stefanie</creatorcontrib><creatorcontrib>Otto, Oliver</creatorcontrib><title>Mechanical characterization of isolated mitochondria under conditions of oxidative stress</title><title>Biomicrofluidics</title><description>Mechanical properties have been proven to be a pivotal parameter to enhance our understanding of living systems. While research during the last decades focused on cells and tissues, little is known about the role of organelle mechanics in cell function. Here, mitochondria are of specific interest due to their involvement in numerous physiological and pathological processes, e.g., in the production and homeostasis of reactive oxygen species (ROS). Using real-time fluorescence and deformability cytometry, we present a microfluidic technology that is capable to determine the mechanical properties of individual mitochondria at a throughput exceeding 100 organelles per second. Our data on several thousands of viable mitochondria isolated from rat C6 glial cells yield a homogenous population with a median deformation that scales with the applied hydrodynamic stress. In two proof-of-principle studies, we investigated the impact of exogenously and endogenously produced ROS on mitochondria mechanics. Exposing C6 cells to hydrogen peroxide (H2O2) triggers superoxide production and leads to a reduction in mitochondria size while deformation is increased. In a second study, we focused on the knockout of tafazzin, which has been associated with impaired remodeling of the mitochondrial membrane and elevated levels of ROS. Interestingly, our results reveal the same mechanical alterations as observed after the exposure to H2O2, which points to a unified biophysical mechanism of how mitochondria respond to the presence of oxidative stress. In summary, we introduce high-throughput mechanical phenotyping into the field of organelle biology with potential applications for understanding sub-cellular dynamics that have not been accessible before.</description><subject>Cytometry</subject><subject>Deformation</subject><subject>Formability</subject><subject>Homeostasis</subject><subject>Hydrogen peroxide</subject><subject>Mechanical properties</subject><subject>Mechanics (physics)</subject><subject>Microfluidics</subject><subject>Mitochondria</subject><subject>Organelles</subject><subject>Oxidative stress</subject><subject>Regular</subject><issn>1932-1058</issn><issn>1932-1058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp90ctqGzEUBuChpFDH6aJvMJBNE7Cj64y0KQSTS8Glm3aRldBIZ2KZ8ciVNKbp00eOjZsLZKUj9OlHOqcovmA0xaiiF3yKMMZc4A_FCEtKJhhxcfSs_lQcx7hEiOOakFFx9wPMQvfO6K7MRdAmQXD_dHK-L31buug7ncCWK5e8WfjeBqfLobcQSpN3bgvjVvq_zuZrGyhjChDjSfGx1V2Ez_t1XPy-vvo1u53Mf958n13OJ4ZxlCaNtlVN20YazSlILhG2XEvTcM1M3QgpGFAiGDXSCkSlIZxUBCrZYMMw1HRcfNvlrodmBdZAn4Lu1Dq4lQ4PymunXp70bqHu_UbJqmZUiBzwdR8Q_J8BYlIrFw10ne7BD1GRmgom69y7TE9f0aUfQp-_t1U1oUwwltXZTpngYwzQHh6DkdpOSXG1n1K25zsbjUtPXT_gjQ__oVrb9j38NvkRhv-iVQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Komaragiri, Yesaswini</creator><creator>Panhwar, Muzaffar H.</creator><creator>Fregin, Bob</creator><creator>Jagirdar, Gayatri</creator><creator>Wolke, Carmen</creator><creator>Spiegler, Stefanie</creator><creator>Otto, Oliver</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7934-3369</orcidid><orcidid>https://orcid.org/0000-0001-6726-6135</orcidid><orcidid>https://orcid.org/0000-0003-0280-5374</orcidid><orcidid>https://orcid.org/0000-0003-0030-4488</orcidid><orcidid>https://orcid.org/0000-0002-7405-2554</orcidid><orcidid>https://orcid.org/0000-0001-8621-1957</orcidid></search><sort><creationdate>20221201</creationdate><title>Mechanical characterization of isolated mitochondria under conditions of oxidative stress</title><author>Komaragiri, Yesaswini ; Panhwar, Muzaffar H. ; Fregin, Bob ; Jagirdar, Gayatri ; Wolke, Carmen ; Spiegler, Stefanie ; Otto, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-bad673fb9ca53e95901d5a9cb5a4c7b8984e32843c9d8039c25262e69b1c41e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cytometry</topic><topic>Deformation</topic><topic>Formability</topic><topic>Homeostasis</topic><topic>Hydrogen peroxide</topic><topic>Mechanical properties</topic><topic>Mechanics (physics)</topic><topic>Microfluidics</topic><topic>Mitochondria</topic><topic>Organelles</topic><topic>Oxidative stress</topic><topic>Regular</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Komaragiri, Yesaswini</creatorcontrib><creatorcontrib>Panhwar, Muzaffar H.</creatorcontrib><creatorcontrib>Fregin, Bob</creatorcontrib><creatorcontrib>Jagirdar, Gayatri</creatorcontrib><creatorcontrib>Wolke, Carmen</creatorcontrib><creatorcontrib>Spiegler, Stefanie</creatorcontrib><creatorcontrib>Otto, Oliver</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomicrofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Komaragiri, Yesaswini</au><au>Panhwar, Muzaffar H.</au><au>Fregin, Bob</au><au>Jagirdar, Gayatri</au><au>Wolke, Carmen</au><au>Spiegler, Stefanie</au><au>Otto, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical characterization of isolated mitochondria under conditions of oxidative stress</atitle><jtitle>Biomicrofluidics</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>16</volume><issue>6</issue><spage>064101</spage><epage>064101</epage><pages>064101-064101</pages><issn>1932-1058</issn><eissn>1932-1058</eissn><coden>BIOMGB</coden><abstract>Mechanical properties have been proven to be a pivotal parameter to enhance our understanding of living systems. While research during the last decades focused on cells and tissues, little is known about the role of organelle mechanics in cell function. Here, mitochondria are of specific interest due to their involvement in numerous physiological and pathological processes, e.g., in the production and homeostasis of reactive oxygen species (ROS). Using real-time fluorescence and deformability cytometry, we present a microfluidic technology that is capable to determine the mechanical properties of individual mitochondria at a throughput exceeding 100 organelles per second. Our data on several thousands of viable mitochondria isolated from rat C6 glial cells yield a homogenous population with a median deformation that scales with the applied hydrodynamic stress. In two proof-of-principle studies, we investigated the impact of exogenously and endogenously produced ROS on mitochondria mechanics. Exposing C6 cells to hydrogen peroxide (H2O2) triggers superoxide production and leads to a reduction in mitochondria size while deformation is increased. In a second study, we focused on the knockout of tafazzin, which has been associated with impaired remodeling of the mitochondrial membrane and elevated levels of ROS. Interestingly, our results reveal the same mechanical alterations as observed after the exposure to H2O2, which points to a unified biophysical mechanism of how mitochondria respond to the presence of oxidative stress. In summary, we introduce high-throughput mechanical phenotyping into the field of organelle biology with potential applications for understanding sub-cellular dynamics that have not been accessible before.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0111581</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7934-3369</orcidid><orcidid>https://orcid.org/0000-0001-6726-6135</orcidid><orcidid>https://orcid.org/0000-0003-0280-5374</orcidid><orcidid>https://orcid.org/0000-0003-0030-4488</orcidid><orcidid>https://orcid.org/0000-0002-7405-2554</orcidid><orcidid>https://orcid.org/0000-0001-8621-1957</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-1058
ispartof Biomicrofluidics, 2022-12, Vol.16 (6), p.064101-064101
issn 1932-1058
1932-1058
language eng
recordid cdi_proquest_miscellaneous_2738497058
source Open Access: PubMed Central; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Cytometry
Deformation
Formability
Homeostasis
Hydrogen peroxide
Mechanical properties
Mechanics (physics)
Microfluidics
Mitochondria
Organelles
Oxidative stress
Regular
title Mechanical characterization of isolated mitochondria under conditions of oxidative stress
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-26T10%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20characterization%20of%20isolated%20mitochondria%20under%20conditions%20of%20oxidative%20stress&rft.jtitle=Biomicrofluidics&rft.au=Komaragiri,%20Yesaswini&rft.date=2022-12-01&rft.volume=16&rft.issue=6&rft.spage=064101&rft.epage=064101&rft.pages=064101-064101&rft.issn=1932-1058&rft.eissn=1932-1058&rft.coden=BIOMGB&rft_id=info:doi/10.1063/5.0111581&rft_dat=%3Cproquest_pubme%3E2738497058%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c450t-bad673fb9ca53e95901d5a9cb5a4c7b8984e32843c9d8039c25262e69b1c41e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2737234844&rft_id=info:pmid/&rfr_iscdi=true