Loading…
Multi-scale approach to assess total porosity and pore size in four different kinds of carbonate rocks
Petroleum is, at present, still the main energy source in the world. Most of it is stored in carbonate rock reservoirs with complex inner structures and pores ranging from nanometers to dozens of meters. Knowing the rock’s entire pore network is indispensable to perform an effective petroleum extrac...
Saved in:
Published in: | Micron (Oxford, England : 1993) England : 1993), 2023-01, Vol.164, p.103385-103385, Article 103385 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Petroleum is, at present, still the main energy source in the world. Most of it is stored in carbonate rock reservoirs with complex inner structures and pores ranging from nanometers to dozens of meters. Knowing the rock’s entire pore network is indispensable to perform an effective petroleum extraction. X-ray microtomography, a technique that generates images from samples’ inner structure and a powerful tool to evaluate the 3D pore network, was employed in this scientific research to scan four kinds of carbonate rocks (Dolomite, Desert Pink, Indiana, and Winterset) in five different pore scales (90 µm, 13 µm, 5.5 µm, 1.0 µm, and 65 nm). A multi-scale approach based on the number of pores was applied to integrate different pore scale data and assess the total porosity as well as each sample pore size distribution. The results were compared to classical Mercury Injection Capillary Pressure (MICP) results, demonstrating a fair agreement in total porosity in the two samples. Multi-scale porosity of the Dolomite sample was 17.7% against (18.9 ± 2.1)% of the MICP porosity. The Winterset sample had multi-scale porosity of 26.2%, while MICP porosity was (31.2 ± 0.6)%. Pore size distribution results were rather satisfactory, especially when overlapping regions in different scales were compared. In general, the multi-scale approach showed good potential. It still needs further evaluation to fine-tune some procedures and fluid flow simulation tests but might become a useful tool to study reservoir rocks with a wide range of pore sizes, such as carbonate rocks.
•Multiscale model developed by the authors.•Analysis of four kinds of carbonate rocks.•Multiscale pore size distribution. |
---|---|
ISSN: | 0968-4328 1878-4291 |
DOI: | 10.1016/j.micron.2022.103385 |