Loading…

How far 3D shapes can be understood from 2D silhouettes

Each 2D silhouette of a 3D unknown object O constrains O inside the volume obtained by back-projecting the silhouette from the corresponding viewpoint. A set of silhouettes specifies a boundary volume R obtained by intersecting the volumes due to each silhouette. R more or less closely approximates...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 1995-02, Vol.17 (2), p.188-195
Main Author: Laurentini, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-f5038d32b8a24f1eddc9dab086a1ec7e201e5c01ab270e45ea0dd0a32aebeca03
cites cdi_FETCH-LOGICAL-c337t-f5038d32b8a24f1eddc9dab086a1ec7e201e5c01ab270e45ea0dd0a32aebeca03
container_end_page 195
container_issue 2
container_start_page 188
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 17
creator Laurentini, A.
description Each 2D silhouette of a 3D unknown object O constrains O inside the volume obtained by back-projecting the silhouette from the corresponding viewpoint. A set of silhouettes specifies a boundary volume R obtained by intersecting the volumes due to each silhouette. R more or less closely approximates O, depending on the viewpoints and the object itself. This approach to the reconstruction of 3D objects is usually referred to as volume intersection. This correspondence addresses the problem of inferring the shape of the unknown object O from the reconstructed object R. For doing this, the author divides the points of the surface of R into hard points, which belong to the surface of any possible object originating R, and soft points, which may or may not belong to O. The author considers two cases: In the first case R is the closest approximation of O which can be obtained from its silhouettes, i.e., its visual hull; in the second case, R is a generic reconstructed object. In both cases the author supplies necessary and sufficient conditions for a point to be hard and gives rules for computing the hard surfaces.< >
doi_str_mv 10.1109/34.368170
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_27395206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>368170</ieee_id><sourcerecordid>28335716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-f5038d32b8a24f1eddc9dab086a1ec7e201e5c01ab270e45ea0dd0a32aebeca03</originalsourceid><addsrcrecordid>eNqF0D1LxEAQBuBFFDxPC1urLUSwyDm7k2Q3pZwfJxzYaB0mmwkXySXnboL4782RQ0urKeaZd-AV4lLBQinI7jBeYGqVgSMxUxlmESaYHYsZqFRH1mp7Ks5C-ABQcQI4E2bVfcmKvMQHGTa04yAdtbJgObQl-9B3XSkr322lHkHdbLqB-57DuTipqAl8cZhz8f70-LZcRevX55fl_TpyiKaPqvGJLVEXlnRcKS5Ll5VUgE1JsTOsQXHiQFGhDXCcMEFZAqEmLtgR4FzcTLk7330OHPp8WwfHTUMtd0PItUVMjEr_hwazRMMe3k7Q-S4Ez1W-8_WW_HeuIN93mGOcTx2O9voQSsFRU3lqXR1-DzAGNJCN7GpiNTP_baeMHzjld3k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27395206</pqid></control><display><type>article</type><title>How far 3D shapes can be understood from 2D silhouettes</title><source>IEEE Xplore (Online service)</source><creator>Laurentini, A.</creator><creatorcontrib>Laurentini, A.</creatorcontrib><description>Each 2D silhouette of a 3D unknown object O constrains O inside the volume obtained by back-projecting the silhouette from the corresponding viewpoint. A set of silhouettes specifies a boundary volume R obtained by intersecting the volumes due to each silhouette. R more or less closely approximates O, depending on the viewpoints and the object itself. This approach to the reconstruction of 3D objects is usually referred to as volume intersection. This correspondence addresses the problem of inferring the shape of the unknown object O from the reconstructed object R. For doing this, the author divides the points of the surface of R into hard points, which belong to the surface of any possible object originating R, and soft points, which may or may not belong to O. The author considers two cases: In the first case R is the closest approximation of O which can be obtained from its silhouettes, i.e., its visual hull; in the second case, R is a generic reconstructed object. In both cases the author supplies necessary and sufficient conditions for a point to be hard and gives rules for computing the hard surfaces.&lt; &gt;</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.368170</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Applied sciences ; Approximation algorithms ; Artificial intelligence ; Computer science; control theory; systems ; Computer vision ; Exact sciences and technology ; Gaussian noise ; Image reconstruction ; Image sensors ; Pattern recognition. Digital image processing. Computational geometry ; Publishing ; Sensor systems ; Shape ; Surface reconstruction ; Target tracking</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1995-02, Vol.17 (2), p.188-195</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-f5038d32b8a24f1eddc9dab086a1ec7e201e5c01ab270e45ea0dd0a32aebeca03</citedby><cites>FETCH-LOGICAL-c337t-f5038d32b8a24f1eddc9dab086a1ec7e201e5c01ab270e45ea0dd0a32aebeca03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/368170$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3403709$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Laurentini, A.</creatorcontrib><title>How far 3D shapes can be understood from 2D silhouettes</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>Each 2D silhouette of a 3D unknown object O constrains O inside the volume obtained by back-projecting the silhouette from the corresponding viewpoint. A set of silhouettes specifies a boundary volume R obtained by intersecting the volumes due to each silhouette. R more or less closely approximates O, depending on the viewpoints and the object itself. This approach to the reconstruction of 3D objects is usually referred to as volume intersection. This correspondence addresses the problem of inferring the shape of the unknown object O from the reconstructed object R. For doing this, the author divides the points of the surface of R into hard points, which belong to the surface of any possible object originating R, and soft points, which may or may not belong to O. The author considers two cases: In the first case R is the closest approximation of O which can be obtained from its silhouettes, i.e., its visual hull; in the second case, R is a generic reconstructed object. In both cases the author supplies necessary and sufficient conditions for a point to be hard and gives rules for computing the hard surfaces.&lt; &gt;</description><subject>Applied sciences</subject><subject>Approximation algorithms</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer vision</subject><subject>Exact sciences and technology</subject><subject>Gaussian noise</subject><subject>Image reconstruction</subject><subject>Image sensors</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Publishing</subject><subject>Sensor systems</subject><subject>Shape</subject><subject>Surface reconstruction</subject><subject>Target tracking</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqF0D1LxEAQBuBFFDxPC1urLUSwyDm7k2Q3pZwfJxzYaB0mmwkXySXnboL4782RQ0urKeaZd-AV4lLBQinI7jBeYGqVgSMxUxlmESaYHYsZqFRH1mp7Ks5C-ABQcQI4E2bVfcmKvMQHGTa04yAdtbJgObQl-9B3XSkr322lHkHdbLqB-57DuTipqAl8cZhz8f70-LZcRevX55fl_TpyiKaPqvGJLVEXlnRcKS5Ll5VUgE1JsTOsQXHiQFGhDXCcMEFZAqEmLtgR4FzcTLk7330OHPp8WwfHTUMtd0PItUVMjEr_hwazRMMe3k7Q-S4Ez1W-8_WW_HeuIN93mGOcTx2O9voQSsFRU3lqXR1-DzAGNJCN7GpiNTP_baeMHzjld3k</recordid><startdate>19950201</startdate><enddate>19950201</enddate><creator>Laurentini, A.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19950201</creationdate><title>How far 3D shapes can be understood from 2D silhouettes</title><author>Laurentini, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-f5038d32b8a24f1eddc9dab086a1ec7e201e5c01ab270e45ea0dd0a32aebeca03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied sciences</topic><topic>Approximation algorithms</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer vision</topic><topic>Exact sciences and technology</topic><topic>Gaussian noise</topic><topic>Image reconstruction</topic><topic>Image sensors</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Publishing</topic><topic>Sensor systems</topic><topic>Shape</topic><topic>Surface reconstruction</topic><topic>Target tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laurentini, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laurentini, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How far 3D shapes can be understood from 2D silhouettes</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1995-02-01</date><risdate>1995</risdate><volume>17</volume><issue>2</issue><spage>188</spage><epage>195</epage><pages>188-195</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>Each 2D silhouette of a 3D unknown object O constrains O inside the volume obtained by back-projecting the silhouette from the corresponding viewpoint. A set of silhouettes specifies a boundary volume R obtained by intersecting the volumes due to each silhouette. R more or less closely approximates O, depending on the viewpoints and the object itself. This approach to the reconstruction of 3D objects is usually referred to as volume intersection. This correspondence addresses the problem of inferring the shape of the unknown object O from the reconstructed object R. For doing this, the author divides the points of the surface of R into hard points, which belong to the surface of any possible object originating R, and soft points, which may or may not belong to O. The author considers two cases: In the first case R is the closest approximation of O which can be obtained from its silhouettes, i.e., its visual hull; in the second case, R is a generic reconstructed object. In both cases the author supplies necessary and sufficient conditions for a point to be hard and gives rules for computing the hard surfaces.&lt; &gt;</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><doi>10.1109/34.368170</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 1995-02, Vol.17 (2), p.188-195
issn 0162-8828
1939-3539
language eng
recordid cdi_proquest_miscellaneous_27395206
source IEEE Xplore (Online service)
subjects Applied sciences
Approximation algorithms
Artificial intelligence
Computer science
control theory
systems
Computer vision
Exact sciences and technology
Gaussian noise
Image reconstruction
Image sensors
Pattern recognition. Digital image processing. Computational geometry
Publishing
Sensor systems
Shape
Surface reconstruction
Target tracking
title How far 3D shapes can be understood from 2D silhouettes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A38%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20far%203D%20shapes%20can%20be%20understood%20from%202D%20silhouettes&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Laurentini,%20A.&rft.date=1995-02-01&rft.volume=17&rft.issue=2&rft.spage=188&rft.epage=195&rft.pages=188-195&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.368170&rft_dat=%3Cproquest_pasca%3E28335716%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-f5038d32b8a24f1eddc9dab086a1ec7e201e5c01ab270e45ea0dd0a32aebeca03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27395206&rft_id=info:pmid/&rft_ieee_id=368170&rfr_iscdi=true