Loading…

Quantum-dot sensitized hierarchical NiO p-n heterojunction for effective photocatalytic performance

A facile and low-cost pseudo successive ionic layer adsorption and reaction technique was used to deposit cadmium sulfide quantum dots (CdS QDs) on hierarchical nanoflower NiO to form an effective and intimate NiO/CdS p-n heterojunction system. The synthesized hierarchical p-n heterojunctions demons...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances 2022-11, Vol.12 (5), p.32459-3247
Main Authors: Khan, Junaid, Ali, Gohar, Samreen, Ayesha, Ahmad, Shahbaz, Ahmad, Sarfraz, Egilmez, Mehmet, Amin, Sadiq, Khan, Nadia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A facile and low-cost pseudo successive ionic layer adsorption and reaction technique was used to deposit cadmium sulfide quantum dots (CdS QDs) on hierarchical nanoflower NiO to form an effective and intimate NiO/CdS p-n heterojunction system. The synthesized hierarchical p-n heterojunctions demonstrated effective photocatalytic activity due to the enhanced separation and transport of photogenerated charge carriers compared to standalone NiO. The dye degradation efficiency of optimized CdS QDs that form p-n heterojunctions was examined by rhodamine B and methylene blue dyes under UV-vis irradiation. The improved photocatalytic performance can be accredited to a large morphological surface, and the successful deposition of CdS QDs to form an active p-n junction for efficient charge separation and migration. The morphological, structural, optical, charge transfer and photocatalytic characteristics of synthesized hierarchical p-n junction photocatalyst were studied by scanning electron microscopy, UV-visible absorbance, X-ray diffraction, photoluminescence spectroscopy, electrochemical spectroscopy, and Fourier transform infrared spectra. Additionally, scavenging experiments were performed to find out the energetic species taking part in dye-degradation, and a rational reaction mechanism has been proposed. A facile and low-cost pseudo successive ionic layer adsorption and reaction technique was used to deposit cadmium sulfide quantum dots (CdS QDs) on hierarchical nanoflower NiO to form effective and intimate NiO/CdS, p-n heterojunctions.
ISSN:2046-2069
2046-2069
DOI:10.1039/d2ra05657g