Loading…

Coexpression network and trans‐activation analyses of maize reproductive phasiRNA loci

SUMMARY The anther‐enriched phased, small interfering RNAs (phasiRNAs) play vital roles in sustaining male fertility in grass species. Their long non‐coding precursors are synthesized by RNA polymerase II and are likely regulated by transcription factors (TFs). A few putative transcriptional regulat...

Full description

Saved in:
Bibliographic Details
Published in:The Plant journal : for cell and molecular biology 2023-01, Vol.113 (1), p.160-173
Main Authors: Zhan, Junpeng, O'Connor, Lily, Marchant, D. Blaine, Teng, Chong, Walbot, Virginia, Meyers, Blake C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3885-ccecb63d555a3192ce1e523d4f477b9fd9af8d8dc555ea06c71ea5d92bc062e03
cites cdi_FETCH-LOGICAL-c3885-ccecb63d555a3192ce1e523d4f477b9fd9af8d8dc555ea06c71ea5d92bc062e03
container_end_page 173
container_issue 1
container_start_page 160
container_title The Plant journal : for cell and molecular biology
container_volume 113
creator Zhan, Junpeng
O'Connor, Lily
Marchant, D. Blaine
Teng, Chong
Walbot, Virginia
Meyers, Blake C.
description SUMMARY The anther‐enriched phased, small interfering RNAs (phasiRNAs) play vital roles in sustaining male fertility in grass species. Their long non‐coding precursors are synthesized by RNA polymerase II and are likely regulated by transcription factors (TFs). A few putative transcriptional regulators of the 21‐ or 24‐nucleotide phasiRNA loci (referred to as 21‐ or 24‐PHAS loci) have been identified in maize (Zea mays), but whether any of the individual TFs or TF combinations suffice to activate any PHAS locus is unclear. Here, we identified the temporal gene coexpression networks (modules) associated with maize anther development, including two modules highly enriched for the 21‐ or 24‐PHAS loci. Comparisons of these coexpression modules and gene sets dysregulated in several reported male sterile TF mutants provided insights into TF timing with regard to phasiRNA biogenesis, including antagonistic roles for OUTER CELL LAYER4 and MALE STERILE23. Trans‐activation assays in maize protoplasts of individual TFs using bulk‐protoplast RNA‐sequencing showed that two of the TFs coexpressed with 21‐PHAS loci could activate several 21‐nucleotide phasiRNA pathway genes but not transcription of 21‐PHAS loci. Screens for combinatorial activities of these TFs and, separately, the recently reported putative transcriptional regulators of 24‐PHAS loci using single‐cell (protoplast) RNA‐sequencing, did not detect reproducible activation of either 21‐PHAS or 24‐PHAS loci. Collectively, our results suggest that the endogenous transcriptional machineries and/or chromatin states in the anthers are necessary to activate reproductive PHAS loci. Significance Statement This work identifies the temporal gene coexpression networks associated with maize anther development, including two modules highly enriched for the 21‐ or 24‐nucleotide reproductive phased, small interfering RNA (phasiRNA) loci. Trans‐activation assays of putative transcriptional regulators of the phasiRNA loci using bulk and single‐cell RNA‐sequencing suggest that endogenous transcriptional machineries and/or chromatin states in the anthers are necessary to activate reproductive phasiRNA loci.
doi_str_mv 10.1111/tpj.16045
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2740910387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2740910387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3885-ccecb63d555a3192ce1e523d4f477b9fd9af8d8dc555ea06c71ea5d92bc062e03</originalsourceid><addsrcrecordid>eNp10LtOwzAUBmALgWgpDLwAisQCQ1o7tnMZq4qrKkCoSN0i1z4RKWkc7IRSJh6BZ-RJcGhhQMKDPfjTr3N-hA4J7hN3BnU175MQM76FuoSG3KeETrdRFych9iNGgg7as3aOMYloyHZRx90MsyTqoulIw2tlwNpcl14J9VKbJ0-UyquNKO3n-4eQdf4i6vZblKJYWbCezryFyN_AM1AZrZqWgFc9Cpvf3wy9Qst8H-1korBwsHl76OH8bDK69Me3F1ej4diXNI65LyXIWUgV51xQkgQSCPCAKpaxKJolmUpEFqtYSQdA4FBGBARXSTCTOAwA0x46Wee6QZ4bsHW6yK2EohAl6MamQcRwQjCNI0eP_9C5bozbqVU8YXHMcBt4ulbSaGsNZGll8oUwq5TgtK07dXWn33U7e7RJbGYLUL_yp18HBmuwzAtY_Z-UTu6u15FfX46LnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759488400</pqid></control><display><type>article</type><title>Coexpression network and trans‐activation analyses of maize reproductive phasiRNA loci</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>EZB Electronic Journals Library</source><creator>Zhan, Junpeng ; O'Connor, Lily ; Marchant, D. Blaine ; Teng, Chong ; Walbot, Virginia ; Meyers, Blake C.</creator><creatorcontrib>Zhan, Junpeng ; O'Connor, Lily ; Marchant, D. Blaine ; Teng, Chong ; Walbot, Virginia ; Meyers, Blake C.</creatorcontrib><description>SUMMARY The anther‐enriched phased, small interfering RNAs (phasiRNAs) play vital roles in sustaining male fertility in grass species. Their long non‐coding precursors are synthesized by RNA polymerase II and are likely regulated by transcription factors (TFs). A few putative transcriptional regulators of the 21‐ or 24‐nucleotide phasiRNA loci (referred to as 21‐ or 24‐PHAS loci) have been identified in maize (Zea mays), but whether any of the individual TFs or TF combinations suffice to activate any PHAS locus is unclear. Here, we identified the temporal gene coexpression networks (modules) associated with maize anther development, including two modules highly enriched for the 21‐ or 24‐PHAS loci. Comparisons of these coexpression modules and gene sets dysregulated in several reported male sterile TF mutants provided insights into TF timing with regard to phasiRNA biogenesis, including antagonistic roles for OUTER CELL LAYER4 and MALE STERILE23. Trans‐activation assays in maize protoplasts of individual TFs using bulk‐protoplast RNA‐sequencing showed that two of the TFs coexpressed with 21‐PHAS loci could activate several 21‐nucleotide phasiRNA pathway genes but not transcription of 21‐PHAS loci. Screens for combinatorial activities of these TFs and, separately, the recently reported putative transcriptional regulators of 24‐PHAS loci using single‐cell (protoplast) RNA‐sequencing, did not detect reproducible activation of either 21‐PHAS or 24‐PHAS loci. Collectively, our results suggest that the endogenous transcriptional machineries and/or chromatin states in the anthers are necessary to activate reproductive PHAS loci. Significance Statement This work identifies the temporal gene coexpression networks associated with maize anther development, including two modules highly enriched for the 21‐ or 24‐nucleotide reproductive phased, small interfering RNA (phasiRNA) loci. Trans‐activation assays of putative transcriptional regulators of the phasiRNA loci using bulk and single‐cell RNA‐sequencing suggest that endogenous transcriptional machineries and/or chromatin states in the anthers are necessary to activate reproductive phasiRNA loci.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.16045</identifier><identifier>PMID: 36440497</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>anther ; Anthers ; Base Sequence ; Chromatin ; coexpression network ; Combinatorial analysis ; Corn ; DNA-directed RNA polymerase ; Fertility ; Gene Expression Regulation, Plant - genetics ; Gene sequencing ; Grasses ; Males ; MicroRNAs - genetics ; Modules ; Nucleotides ; Poaceae - genetics ; protoplast ; Protoplasts ; reproductive phasiRNA ; Ribonucleic acid ; RNA ; RNA polymerase ; RNA polymerase II ; RNA, Plant - genetics ; RNA, Small Interfering - genetics ; single‐cell RNA‐seq ; Transcription factors ; trans‐activation assay ; Zea mays ; Zea mays - genetics</subject><ispartof>The Plant journal : for cell and molecular biology, 2023-01, Vol.113 (1), p.160-173</ispartof><rights>2022 Society for Experimental Biology and John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2023 John Wiley &amp; Sons Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3885-ccecb63d555a3192ce1e523d4f477b9fd9af8d8dc555ea06c71ea5d92bc062e03</citedby><cites>FETCH-LOGICAL-c3885-ccecb63d555a3192ce1e523d4f477b9fd9af8d8dc555ea06c71ea5d92bc062e03</cites><orcidid>0000-0003-1733-3381 ; 0000-0002-1596-7279 ; 0000-0001-7353-7608 ; 0000-0001-9898-6442 ; 0000-0002-4337-3582 ; 0000-0003-3436-6097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36440497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhan, Junpeng</creatorcontrib><creatorcontrib>O'Connor, Lily</creatorcontrib><creatorcontrib>Marchant, D. Blaine</creatorcontrib><creatorcontrib>Teng, Chong</creatorcontrib><creatorcontrib>Walbot, Virginia</creatorcontrib><creatorcontrib>Meyers, Blake C.</creatorcontrib><title>Coexpression network and trans‐activation analyses of maize reproductive phasiRNA loci</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>SUMMARY The anther‐enriched phased, small interfering RNAs (phasiRNAs) play vital roles in sustaining male fertility in grass species. Their long non‐coding precursors are synthesized by RNA polymerase II and are likely regulated by transcription factors (TFs). A few putative transcriptional regulators of the 21‐ or 24‐nucleotide phasiRNA loci (referred to as 21‐ or 24‐PHAS loci) have been identified in maize (Zea mays), but whether any of the individual TFs or TF combinations suffice to activate any PHAS locus is unclear. Here, we identified the temporal gene coexpression networks (modules) associated with maize anther development, including two modules highly enriched for the 21‐ or 24‐PHAS loci. Comparisons of these coexpression modules and gene sets dysregulated in several reported male sterile TF mutants provided insights into TF timing with regard to phasiRNA biogenesis, including antagonistic roles for OUTER CELL LAYER4 and MALE STERILE23. Trans‐activation assays in maize protoplasts of individual TFs using bulk‐protoplast RNA‐sequencing showed that two of the TFs coexpressed with 21‐PHAS loci could activate several 21‐nucleotide phasiRNA pathway genes but not transcription of 21‐PHAS loci. Screens for combinatorial activities of these TFs and, separately, the recently reported putative transcriptional regulators of 24‐PHAS loci using single‐cell (protoplast) RNA‐sequencing, did not detect reproducible activation of either 21‐PHAS or 24‐PHAS loci. Collectively, our results suggest that the endogenous transcriptional machineries and/or chromatin states in the anthers are necessary to activate reproductive PHAS loci. Significance Statement This work identifies the temporal gene coexpression networks associated with maize anther development, including two modules highly enriched for the 21‐ or 24‐nucleotide reproductive phased, small interfering RNA (phasiRNA) loci. Trans‐activation assays of putative transcriptional regulators of the phasiRNA loci using bulk and single‐cell RNA‐sequencing suggest that endogenous transcriptional machineries and/or chromatin states in the anthers are necessary to activate reproductive phasiRNA loci.</description><subject>anther</subject><subject>Anthers</subject><subject>Base Sequence</subject><subject>Chromatin</subject><subject>coexpression network</subject><subject>Combinatorial analysis</subject><subject>Corn</subject><subject>DNA-directed RNA polymerase</subject><subject>Fertility</subject><subject>Gene Expression Regulation, Plant - genetics</subject><subject>Gene sequencing</subject><subject>Grasses</subject><subject>Males</subject><subject>MicroRNAs - genetics</subject><subject>Modules</subject><subject>Nucleotides</subject><subject>Poaceae - genetics</subject><subject>protoplast</subject><subject>Protoplasts</subject><subject>reproductive phasiRNA</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>RNA polymerase II</subject><subject>RNA, Plant - genetics</subject><subject>RNA, Small Interfering - genetics</subject><subject>single‐cell RNA‐seq</subject><subject>Transcription factors</subject><subject>trans‐activation assay</subject><subject>Zea mays</subject><subject>Zea mays - genetics</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10LtOwzAUBmALgWgpDLwAisQCQ1o7tnMZq4qrKkCoSN0i1z4RKWkc7IRSJh6BZ-RJcGhhQMKDPfjTr3N-hA4J7hN3BnU175MQM76FuoSG3KeETrdRFych9iNGgg7as3aOMYloyHZRx90MsyTqoulIw2tlwNpcl14J9VKbJ0-UyquNKO3n-4eQdf4i6vZblKJYWbCezryFyN_AM1AZrZqWgFc9Cpvf3wy9Qst8H-1korBwsHl76OH8bDK69Me3F1ej4diXNI65LyXIWUgV51xQkgQSCPCAKpaxKJolmUpEFqtYSQdA4FBGBARXSTCTOAwA0x46Wee6QZ4bsHW6yK2EohAl6MamQcRwQjCNI0eP_9C5bozbqVU8YXHMcBt4ulbSaGsNZGll8oUwq5TgtK07dXWn33U7e7RJbGYLUL_yp18HBmuwzAtY_Z-UTu6u15FfX46LnQ</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Zhan, Junpeng</creator><creator>O'Connor, Lily</creator><creator>Marchant, D. Blaine</creator><creator>Teng, Chong</creator><creator>Walbot, Virginia</creator><creator>Meyers, Blake C.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1733-3381</orcidid><orcidid>https://orcid.org/0000-0002-1596-7279</orcidid><orcidid>https://orcid.org/0000-0001-7353-7608</orcidid><orcidid>https://orcid.org/0000-0001-9898-6442</orcidid><orcidid>https://orcid.org/0000-0002-4337-3582</orcidid><orcidid>https://orcid.org/0000-0003-3436-6097</orcidid></search><sort><creationdate>202301</creationdate><title>Coexpression network and trans‐activation analyses of maize reproductive phasiRNA loci</title><author>Zhan, Junpeng ; O'Connor, Lily ; Marchant, D. Blaine ; Teng, Chong ; Walbot, Virginia ; Meyers, Blake C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3885-ccecb63d555a3192ce1e523d4f477b9fd9af8d8dc555ea06c71ea5d92bc062e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>anther</topic><topic>Anthers</topic><topic>Base Sequence</topic><topic>Chromatin</topic><topic>coexpression network</topic><topic>Combinatorial analysis</topic><topic>Corn</topic><topic>DNA-directed RNA polymerase</topic><topic>Fertility</topic><topic>Gene Expression Regulation, Plant - genetics</topic><topic>Gene sequencing</topic><topic>Grasses</topic><topic>Males</topic><topic>MicroRNAs - genetics</topic><topic>Modules</topic><topic>Nucleotides</topic><topic>Poaceae - genetics</topic><topic>protoplast</topic><topic>Protoplasts</topic><topic>reproductive phasiRNA</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>RNA polymerase II</topic><topic>RNA, Plant - genetics</topic><topic>RNA, Small Interfering - genetics</topic><topic>single‐cell RNA‐seq</topic><topic>Transcription factors</topic><topic>trans‐activation assay</topic><topic>Zea mays</topic><topic>Zea mays - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Junpeng</creatorcontrib><creatorcontrib>O'Connor, Lily</creatorcontrib><creatorcontrib>Marchant, D. Blaine</creatorcontrib><creatorcontrib>Teng, Chong</creatorcontrib><creatorcontrib>Walbot, Virginia</creatorcontrib><creatorcontrib>Meyers, Blake C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, Junpeng</au><au>O'Connor, Lily</au><au>Marchant, D. Blaine</au><au>Teng, Chong</au><au>Walbot, Virginia</au><au>Meyers, Blake C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coexpression network and trans‐activation analyses of maize reproductive phasiRNA loci</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2023-01</date><risdate>2023</risdate><volume>113</volume><issue>1</issue><spage>160</spage><epage>173</epage><pages>160-173</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>SUMMARY The anther‐enriched phased, small interfering RNAs (phasiRNAs) play vital roles in sustaining male fertility in grass species. Their long non‐coding precursors are synthesized by RNA polymerase II and are likely regulated by transcription factors (TFs). A few putative transcriptional regulators of the 21‐ or 24‐nucleotide phasiRNA loci (referred to as 21‐ or 24‐PHAS loci) have been identified in maize (Zea mays), but whether any of the individual TFs or TF combinations suffice to activate any PHAS locus is unclear. Here, we identified the temporal gene coexpression networks (modules) associated with maize anther development, including two modules highly enriched for the 21‐ or 24‐PHAS loci. Comparisons of these coexpression modules and gene sets dysregulated in several reported male sterile TF mutants provided insights into TF timing with regard to phasiRNA biogenesis, including antagonistic roles for OUTER CELL LAYER4 and MALE STERILE23. Trans‐activation assays in maize protoplasts of individual TFs using bulk‐protoplast RNA‐sequencing showed that two of the TFs coexpressed with 21‐PHAS loci could activate several 21‐nucleotide phasiRNA pathway genes but not transcription of 21‐PHAS loci. Screens for combinatorial activities of these TFs and, separately, the recently reported putative transcriptional regulators of 24‐PHAS loci using single‐cell (protoplast) RNA‐sequencing, did not detect reproducible activation of either 21‐PHAS or 24‐PHAS loci. Collectively, our results suggest that the endogenous transcriptional machineries and/or chromatin states in the anthers are necessary to activate reproductive PHAS loci. Significance Statement This work identifies the temporal gene coexpression networks associated with maize anther development, including two modules highly enriched for the 21‐ or 24‐nucleotide reproductive phased, small interfering RNA (phasiRNA) loci. Trans‐activation assays of putative transcriptional regulators of the phasiRNA loci using bulk and single‐cell RNA‐sequencing suggest that endogenous transcriptional machineries and/or chromatin states in the anthers are necessary to activate reproductive phasiRNA loci.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>36440497</pmid><doi>10.1111/tpj.16045</doi><tpages>173</tpages><orcidid>https://orcid.org/0000-0003-1733-3381</orcidid><orcidid>https://orcid.org/0000-0002-1596-7279</orcidid><orcidid>https://orcid.org/0000-0001-7353-7608</orcidid><orcidid>https://orcid.org/0000-0001-9898-6442</orcidid><orcidid>https://orcid.org/0000-0002-4337-3582</orcidid><orcidid>https://orcid.org/0000-0003-3436-6097</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2023-01, Vol.113 (1), p.160-173
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_miscellaneous_2740910387
source Wiley-Blackwell Read & Publish Collection; EZB Electronic Journals Library
subjects anther
Anthers
Base Sequence
Chromatin
coexpression network
Combinatorial analysis
Corn
DNA-directed RNA polymerase
Fertility
Gene Expression Regulation, Plant - genetics
Gene sequencing
Grasses
Males
MicroRNAs - genetics
Modules
Nucleotides
Poaceae - genetics
protoplast
Protoplasts
reproductive phasiRNA
Ribonucleic acid
RNA
RNA polymerase
RNA polymerase II
RNA, Plant - genetics
RNA, Small Interfering - genetics
single‐cell RNA‐seq
Transcription factors
trans‐activation assay
Zea mays
Zea mays - genetics
title Coexpression network and trans‐activation analyses of maize reproductive phasiRNA loci
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A53%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coexpression%20network%20and%20trans%E2%80%90activation%20analyses%20of%20maize%20reproductive%20phasiRNA%20loci&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Zhan,%20Junpeng&rft.date=2023-01&rft.volume=113&rft.issue=1&rft.spage=160&rft.epage=173&rft.pages=160-173&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.16045&rft_dat=%3Cproquest_cross%3E2740910387%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3885-ccecb63d555a3192ce1e523d4f477b9fd9af8d8dc555ea06c71ea5d92bc062e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2759488400&rft_id=info:pmid/36440497&rfr_iscdi=true