Loading…
Coexpression network and trans‐activation analyses of maize reproductive phasiRNA loci
SUMMARY The anther‐enriched phased, small interfering RNAs (phasiRNAs) play vital roles in sustaining male fertility in grass species. Their long non‐coding precursors are synthesized by RNA polymerase II and are likely regulated by transcription factors (TFs). A few putative transcriptional regulat...
Saved in:
Published in: | The Plant journal : for cell and molecular biology 2023-01, Vol.113 (1), p.160-173 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3885-ccecb63d555a3192ce1e523d4f477b9fd9af8d8dc555ea06c71ea5d92bc062e03 |
---|---|
cites | cdi_FETCH-LOGICAL-c3885-ccecb63d555a3192ce1e523d4f477b9fd9af8d8dc555ea06c71ea5d92bc062e03 |
container_end_page | 173 |
container_issue | 1 |
container_start_page | 160 |
container_title | The Plant journal : for cell and molecular biology |
container_volume | 113 |
creator | Zhan, Junpeng O'Connor, Lily Marchant, D. Blaine Teng, Chong Walbot, Virginia Meyers, Blake C. |
description | SUMMARY
The anther‐enriched phased, small interfering RNAs (phasiRNAs) play vital roles in sustaining male fertility in grass species. Their long non‐coding precursors are synthesized by RNA polymerase II and are likely regulated by transcription factors (TFs). A few putative transcriptional regulators of the 21‐ or 24‐nucleotide phasiRNA loci (referred to as 21‐ or 24‐PHAS loci) have been identified in maize (Zea mays), but whether any of the individual TFs or TF combinations suffice to activate any PHAS locus is unclear. Here, we identified the temporal gene coexpression networks (modules) associated with maize anther development, including two modules highly enriched for the 21‐ or 24‐PHAS loci. Comparisons of these coexpression modules and gene sets dysregulated in several reported male sterile TF mutants provided insights into TF timing with regard to phasiRNA biogenesis, including antagonistic roles for OUTER CELL LAYER4 and MALE STERILE23. Trans‐activation assays in maize protoplasts of individual TFs using bulk‐protoplast RNA‐sequencing showed that two of the TFs coexpressed with 21‐PHAS loci could activate several 21‐nucleotide phasiRNA pathway genes but not transcription of 21‐PHAS loci. Screens for combinatorial activities of these TFs and, separately, the recently reported putative transcriptional regulators of 24‐PHAS loci using single‐cell (protoplast) RNA‐sequencing, did not detect reproducible activation of either 21‐PHAS or 24‐PHAS loci. Collectively, our results suggest that the endogenous transcriptional machineries and/or chromatin states in the anthers are necessary to activate reproductive PHAS loci.
Significance Statement
This work identifies the temporal gene coexpression networks associated with maize anther development, including two modules highly enriched for the 21‐ or 24‐nucleotide reproductive phased, small interfering RNA (phasiRNA) loci. Trans‐activation assays of putative transcriptional regulators of the phasiRNA loci using bulk and single‐cell RNA‐sequencing suggest that endogenous transcriptional machineries and/or chromatin states in the anthers are necessary to activate reproductive phasiRNA loci. |
doi_str_mv | 10.1111/tpj.16045 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2740910387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2740910387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3885-ccecb63d555a3192ce1e523d4f477b9fd9af8d8dc555ea06c71ea5d92bc062e03</originalsourceid><addsrcrecordid>eNp10LtOwzAUBmALgWgpDLwAisQCQ1o7tnMZq4qrKkCoSN0i1z4RKWkc7IRSJh6BZ-RJcGhhQMKDPfjTr3N-hA4J7hN3BnU175MQM76FuoSG3KeETrdRFych9iNGgg7as3aOMYloyHZRx90MsyTqoulIw2tlwNpcl14J9VKbJ0-UyquNKO3n-4eQdf4i6vZblKJYWbCezryFyN_AM1AZrZqWgFc9Cpvf3wy9Qst8H-1korBwsHl76OH8bDK69Me3F1ej4diXNI65LyXIWUgV51xQkgQSCPCAKpaxKJolmUpEFqtYSQdA4FBGBARXSTCTOAwA0x46Wee6QZ4bsHW6yK2EohAl6MamQcRwQjCNI0eP_9C5bozbqVU8YXHMcBt4ulbSaGsNZGll8oUwq5TgtK07dXWn33U7e7RJbGYLUL_yp18HBmuwzAtY_Z-UTu6u15FfX46LnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759488400</pqid></control><display><type>article</type><title>Coexpression network and trans‐activation analyses of maize reproductive phasiRNA loci</title><source>Wiley-Blackwell Read & Publish Collection</source><source>EZB Electronic Journals Library</source><creator>Zhan, Junpeng ; O'Connor, Lily ; Marchant, D. Blaine ; Teng, Chong ; Walbot, Virginia ; Meyers, Blake C.</creator><creatorcontrib>Zhan, Junpeng ; O'Connor, Lily ; Marchant, D. Blaine ; Teng, Chong ; Walbot, Virginia ; Meyers, Blake C.</creatorcontrib><description>SUMMARY
The anther‐enriched phased, small interfering RNAs (phasiRNAs) play vital roles in sustaining male fertility in grass species. Their long non‐coding precursors are synthesized by RNA polymerase II and are likely regulated by transcription factors (TFs). A few putative transcriptional regulators of the 21‐ or 24‐nucleotide phasiRNA loci (referred to as 21‐ or 24‐PHAS loci) have been identified in maize (Zea mays), but whether any of the individual TFs or TF combinations suffice to activate any PHAS locus is unclear. Here, we identified the temporal gene coexpression networks (modules) associated with maize anther development, including two modules highly enriched for the 21‐ or 24‐PHAS loci. Comparisons of these coexpression modules and gene sets dysregulated in several reported male sterile TF mutants provided insights into TF timing with regard to phasiRNA biogenesis, including antagonistic roles for OUTER CELL LAYER4 and MALE STERILE23. Trans‐activation assays in maize protoplasts of individual TFs using bulk‐protoplast RNA‐sequencing showed that two of the TFs coexpressed with 21‐PHAS loci could activate several 21‐nucleotide phasiRNA pathway genes but not transcription of 21‐PHAS loci. Screens for combinatorial activities of these TFs and, separately, the recently reported putative transcriptional regulators of 24‐PHAS loci using single‐cell (protoplast) RNA‐sequencing, did not detect reproducible activation of either 21‐PHAS or 24‐PHAS loci. Collectively, our results suggest that the endogenous transcriptional machineries and/or chromatin states in the anthers are necessary to activate reproductive PHAS loci.
Significance Statement
This work identifies the temporal gene coexpression networks associated with maize anther development, including two modules highly enriched for the 21‐ or 24‐nucleotide reproductive phased, small interfering RNA (phasiRNA) loci. Trans‐activation assays of putative transcriptional regulators of the phasiRNA loci using bulk and single‐cell RNA‐sequencing suggest that endogenous transcriptional machineries and/or chromatin states in the anthers are necessary to activate reproductive phasiRNA loci.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.16045</identifier><identifier>PMID: 36440497</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>anther ; Anthers ; Base Sequence ; Chromatin ; coexpression network ; Combinatorial analysis ; Corn ; DNA-directed RNA polymerase ; Fertility ; Gene Expression Regulation, Plant - genetics ; Gene sequencing ; Grasses ; Males ; MicroRNAs - genetics ; Modules ; Nucleotides ; Poaceae - genetics ; protoplast ; Protoplasts ; reproductive phasiRNA ; Ribonucleic acid ; RNA ; RNA polymerase ; RNA polymerase II ; RNA, Plant - genetics ; RNA, Small Interfering - genetics ; single‐cell RNA‐seq ; Transcription factors ; trans‐activation assay ; Zea mays ; Zea mays - genetics</subject><ispartof>The Plant journal : for cell and molecular biology, 2023-01, Vol.113 (1), p.160-173</ispartof><rights>2022 Society for Experimental Biology and John Wiley & Sons Ltd.</rights><rights>Copyright © 2023 John Wiley & Sons Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3885-ccecb63d555a3192ce1e523d4f477b9fd9af8d8dc555ea06c71ea5d92bc062e03</citedby><cites>FETCH-LOGICAL-c3885-ccecb63d555a3192ce1e523d4f477b9fd9af8d8dc555ea06c71ea5d92bc062e03</cites><orcidid>0000-0003-1733-3381 ; 0000-0002-1596-7279 ; 0000-0001-7353-7608 ; 0000-0001-9898-6442 ; 0000-0002-4337-3582 ; 0000-0003-3436-6097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36440497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhan, Junpeng</creatorcontrib><creatorcontrib>O'Connor, Lily</creatorcontrib><creatorcontrib>Marchant, D. Blaine</creatorcontrib><creatorcontrib>Teng, Chong</creatorcontrib><creatorcontrib>Walbot, Virginia</creatorcontrib><creatorcontrib>Meyers, Blake C.</creatorcontrib><title>Coexpression network and trans‐activation analyses of maize reproductive phasiRNA loci</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>SUMMARY
The anther‐enriched phased, small interfering RNAs (phasiRNAs) play vital roles in sustaining male fertility in grass species. Their long non‐coding precursors are synthesized by RNA polymerase II and are likely regulated by transcription factors (TFs). A few putative transcriptional regulators of the 21‐ or 24‐nucleotide phasiRNA loci (referred to as 21‐ or 24‐PHAS loci) have been identified in maize (Zea mays), but whether any of the individual TFs or TF combinations suffice to activate any PHAS locus is unclear. Here, we identified the temporal gene coexpression networks (modules) associated with maize anther development, including two modules highly enriched for the 21‐ or 24‐PHAS loci. Comparisons of these coexpression modules and gene sets dysregulated in several reported male sterile TF mutants provided insights into TF timing with regard to phasiRNA biogenesis, including antagonistic roles for OUTER CELL LAYER4 and MALE STERILE23. Trans‐activation assays in maize protoplasts of individual TFs using bulk‐protoplast RNA‐sequencing showed that two of the TFs coexpressed with 21‐PHAS loci could activate several 21‐nucleotide phasiRNA pathway genes but not transcription of 21‐PHAS loci. Screens for combinatorial activities of these TFs and, separately, the recently reported putative transcriptional regulators of 24‐PHAS loci using single‐cell (protoplast) RNA‐sequencing, did not detect reproducible activation of either 21‐PHAS or 24‐PHAS loci. Collectively, our results suggest that the endogenous transcriptional machineries and/or chromatin states in the anthers are necessary to activate reproductive PHAS loci.
Significance Statement
This work identifies the temporal gene coexpression networks associated with maize anther development, including two modules highly enriched for the 21‐ or 24‐nucleotide reproductive phased, small interfering RNA (phasiRNA) loci. Trans‐activation assays of putative transcriptional regulators of the phasiRNA loci using bulk and single‐cell RNA‐sequencing suggest that endogenous transcriptional machineries and/or chromatin states in the anthers are necessary to activate reproductive phasiRNA loci.</description><subject>anther</subject><subject>Anthers</subject><subject>Base Sequence</subject><subject>Chromatin</subject><subject>coexpression network</subject><subject>Combinatorial analysis</subject><subject>Corn</subject><subject>DNA-directed RNA polymerase</subject><subject>Fertility</subject><subject>Gene Expression Regulation, Plant - genetics</subject><subject>Gene sequencing</subject><subject>Grasses</subject><subject>Males</subject><subject>MicroRNAs - genetics</subject><subject>Modules</subject><subject>Nucleotides</subject><subject>Poaceae - genetics</subject><subject>protoplast</subject><subject>Protoplasts</subject><subject>reproductive phasiRNA</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>RNA polymerase II</subject><subject>RNA, Plant - genetics</subject><subject>RNA, Small Interfering - genetics</subject><subject>single‐cell RNA‐seq</subject><subject>Transcription factors</subject><subject>trans‐activation assay</subject><subject>Zea mays</subject><subject>Zea mays - genetics</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10LtOwzAUBmALgWgpDLwAisQCQ1o7tnMZq4qrKkCoSN0i1z4RKWkc7IRSJh6BZ-RJcGhhQMKDPfjTr3N-hA4J7hN3BnU175MQM76FuoSG3KeETrdRFych9iNGgg7as3aOMYloyHZRx90MsyTqoulIw2tlwNpcl14J9VKbJ0-UyquNKO3n-4eQdf4i6vZblKJYWbCezryFyN_AM1AZrZqWgFc9Cpvf3wy9Qst8H-1korBwsHl76OH8bDK69Me3F1ej4diXNI65LyXIWUgV51xQkgQSCPCAKpaxKJolmUpEFqtYSQdA4FBGBARXSTCTOAwA0x46Wee6QZ4bsHW6yK2EohAl6MamQcRwQjCNI0eP_9C5bozbqVU8YXHMcBt4ulbSaGsNZGll8oUwq5TgtK07dXWn33U7e7RJbGYLUL_yp18HBmuwzAtY_Z-UTu6u15FfX46LnQ</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Zhan, Junpeng</creator><creator>O'Connor, Lily</creator><creator>Marchant, D. Blaine</creator><creator>Teng, Chong</creator><creator>Walbot, Virginia</creator><creator>Meyers, Blake C.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1733-3381</orcidid><orcidid>https://orcid.org/0000-0002-1596-7279</orcidid><orcidid>https://orcid.org/0000-0001-7353-7608</orcidid><orcidid>https://orcid.org/0000-0001-9898-6442</orcidid><orcidid>https://orcid.org/0000-0002-4337-3582</orcidid><orcidid>https://orcid.org/0000-0003-3436-6097</orcidid></search><sort><creationdate>202301</creationdate><title>Coexpression network and trans‐activation analyses of maize reproductive phasiRNA loci</title><author>Zhan, Junpeng ; O'Connor, Lily ; Marchant, D. Blaine ; Teng, Chong ; Walbot, Virginia ; Meyers, Blake C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3885-ccecb63d555a3192ce1e523d4f477b9fd9af8d8dc555ea06c71ea5d92bc062e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>anther</topic><topic>Anthers</topic><topic>Base Sequence</topic><topic>Chromatin</topic><topic>coexpression network</topic><topic>Combinatorial analysis</topic><topic>Corn</topic><topic>DNA-directed RNA polymerase</topic><topic>Fertility</topic><topic>Gene Expression Regulation, Plant - genetics</topic><topic>Gene sequencing</topic><topic>Grasses</topic><topic>Males</topic><topic>MicroRNAs - genetics</topic><topic>Modules</topic><topic>Nucleotides</topic><topic>Poaceae - genetics</topic><topic>protoplast</topic><topic>Protoplasts</topic><topic>reproductive phasiRNA</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>RNA polymerase II</topic><topic>RNA, Plant - genetics</topic><topic>RNA, Small Interfering - genetics</topic><topic>single‐cell RNA‐seq</topic><topic>Transcription factors</topic><topic>trans‐activation assay</topic><topic>Zea mays</topic><topic>Zea mays - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Junpeng</creatorcontrib><creatorcontrib>O'Connor, Lily</creatorcontrib><creatorcontrib>Marchant, D. Blaine</creatorcontrib><creatorcontrib>Teng, Chong</creatorcontrib><creatorcontrib>Walbot, Virginia</creatorcontrib><creatorcontrib>Meyers, Blake C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, Junpeng</au><au>O'Connor, Lily</au><au>Marchant, D. Blaine</au><au>Teng, Chong</au><au>Walbot, Virginia</au><au>Meyers, Blake C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coexpression network and trans‐activation analyses of maize reproductive phasiRNA loci</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2023-01</date><risdate>2023</risdate><volume>113</volume><issue>1</issue><spage>160</spage><epage>173</epage><pages>160-173</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>SUMMARY
The anther‐enriched phased, small interfering RNAs (phasiRNAs) play vital roles in sustaining male fertility in grass species. Their long non‐coding precursors are synthesized by RNA polymerase II and are likely regulated by transcription factors (TFs). A few putative transcriptional regulators of the 21‐ or 24‐nucleotide phasiRNA loci (referred to as 21‐ or 24‐PHAS loci) have been identified in maize (Zea mays), but whether any of the individual TFs or TF combinations suffice to activate any PHAS locus is unclear. Here, we identified the temporal gene coexpression networks (modules) associated with maize anther development, including two modules highly enriched for the 21‐ or 24‐PHAS loci. Comparisons of these coexpression modules and gene sets dysregulated in several reported male sterile TF mutants provided insights into TF timing with regard to phasiRNA biogenesis, including antagonistic roles for OUTER CELL LAYER4 and MALE STERILE23. Trans‐activation assays in maize protoplasts of individual TFs using bulk‐protoplast RNA‐sequencing showed that two of the TFs coexpressed with 21‐PHAS loci could activate several 21‐nucleotide phasiRNA pathway genes but not transcription of 21‐PHAS loci. Screens for combinatorial activities of these TFs and, separately, the recently reported putative transcriptional regulators of 24‐PHAS loci using single‐cell (protoplast) RNA‐sequencing, did not detect reproducible activation of either 21‐PHAS or 24‐PHAS loci. Collectively, our results suggest that the endogenous transcriptional machineries and/or chromatin states in the anthers are necessary to activate reproductive PHAS loci.
Significance Statement
This work identifies the temporal gene coexpression networks associated with maize anther development, including two modules highly enriched for the 21‐ or 24‐nucleotide reproductive phased, small interfering RNA (phasiRNA) loci. Trans‐activation assays of putative transcriptional regulators of the phasiRNA loci using bulk and single‐cell RNA‐sequencing suggest that endogenous transcriptional machineries and/or chromatin states in the anthers are necessary to activate reproductive phasiRNA loci.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>36440497</pmid><doi>10.1111/tpj.16045</doi><tpages>173</tpages><orcidid>https://orcid.org/0000-0003-1733-3381</orcidid><orcidid>https://orcid.org/0000-0002-1596-7279</orcidid><orcidid>https://orcid.org/0000-0001-7353-7608</orcidid><orcidid>https://orcid.org/0000-0001-9898-6442</orcidid><orcidid>https://orcid.org/0000-0002-4337-3582</orcidid><orcidid>https://orcid.org/0000-0003-3436-6097</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7412 |
ispartof | The Plant journal : for cell and molecular biology, 2023-01, Vol.113 (1), p.160-173 |
issn | 0960-7412 1365-313X |
language | eng |
recordid | cdi_proquest_miscellaneous_2740910387 |
source | Wiley-Blackwell Read & Publish Collection; EZB Electronic Journals Library |
subjects | anther Anthers Base Sequence Chromatin coexpression network Combinatorial analysis Corn DNA-directed RNA polymerase Fertility Gene Expression Regulation, Plant - genetics Gene sequencing Grasses Males MicroRNAs - genetics Modules Nucleotides Poaceae - genetics protoplast Protoplasts reproductive phasiRNA Ribonucleic acid RNA RNA polymerase RNA polymerase II RNA, Plant - genetics RNA, Small Interfering - genetics single‐cell RNA‐seq Transcription factors trans‐activation assay Zea mays Zea mays - genetics |
title | Coexpression network and trans‐activation analyses of maize reproductive phasiRNA loci |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A53%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coexpression%20network%20and%20trans%E2%80%90activation%20analyses%20of%20maize%20reproductive%20phasiRNA%20loci&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Zhan,%20Junpeng&rft.date=2023-01&rft.volume=113&rft.issue=1&rft.spage=160&rft.epage=173&rft.pages=160-173&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.16045&rft_dat=%3Cproquest_cross%3E2740910387%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3885-ccecb63d555a3192ce1e523d4f477b9fd9af8d8dc555ea06c71ea5d92bc062e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2759488400&rft_id=info:pmid/36440497&rfr_iscdi=true |