Loading…
Synthesis of 10-Phenanthrenols via Photosensitized Triplet Energy Transfer, Photoinduced Electron Transfer, and Cobalt Catalysis
Due to the inert redox activity and high triplet energy, radical chemistry of 1,3-dicarbonyl compounds usually requires prefunctionalization substrates, external oxidant, and high-energy UV light. Here, we report a visible-light-driven photocatalyst/cobaloxime system composed of a photosensitized en...
Saved in:
Published in: | Journal of organic chemistry 2022-12, Vol.87 (24), p.16458-16472 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Due to the inert redox activity and high triplet energy, radical chemistry of 1,3-dicarbonyl compounds usually requires prefunctionalization substrates, external oxidant, and high-energy UV light. Here, we report a visible-light-driven photocatalyst/cobaloxime system composed of a photosensitized energy transfer reaction (PEnT) and photoinduced electron transfer reaction (PET) and with an interrupted 6π-photocyclization/dehydrogenative aromatization in one pot to synthesize 10-phenanthrenols. Preliminary mechanistic studies revealed that fac-Ir(ppy)3 plays the dual roles of energy transfer catalysis for photocycloaddition via 1,2-biradical intermediates of 1,3-dicarbonyl compounds and photoredox/cobaloxime catalysis dehydrogenative aromatization of 1,4-biradical rather than the intermediates via 6π photocyclization in the tandem reaction. In contrast to previous well-established radical chemistry of 1,3-dicarbonyl compounds, we provide a new strategy for the activation of 1,3-dicarbonyl compounds under visible light catalysis, affording a novel cyclization strategy with extremely high atom economy for the synthesis of 10-phenanthrenols. |
---|---|
ISSN: | 0022-3263 1520-6904 |
DOI: | 10.1021/acs.joc.2c02182 |