Loading…

Evaluating three evapotranspiration methods in the SLURP macroscale hydrological model

Hydrological models simulate the land phase component of the global water cycle and provide a mechanism for evaluating the effects of climatic variation and change on water resources. Evapotranspiration (ET) is a critical process within such models. This study evaluates three different methods for e...

Full description

Saved in:
Bibliographic Details
Published in:Hydrological processes 1997-10, Vol.11 (13), p.1685-1705
Main Authors: Barr, Alan G., Kite, G. W., Granger, R., Smith, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c4509-49a6d352f12e98691fd8c1725ee5c90046003bb56f3790c7e0bad353e95b77d03
container_end_page 1705
container_issue 13
container_start_page 1685
container_title Hydrological processes
container_volume 11
creator Barr, Alan G.
Kite, G. W.
Granger, R.
Smith, C.
description Hydrological models simulate the land phase component of the global water cycle and provide a mechanism for evaluating the effects of climatic variation and change on water resources. Evapotranspiration (ET) is a critical process within such models. This study evaluates three different methods for estimating ET in the simple lumped reservoir parametric model (SLURP), over a five‐year period in the Kootenay Basin of eastern British Columbia. The three ET methods were the Morton implementation of the Bouchet complementary relationship, the Granger modification of Penman's method and the Spittlehouse energy‐limited versus soil moisture‐limited method. We evaluated the three ET methods indirectly, based on the ability of the SLURP hydrological model to simulate daily stream flow over several annual cycles. Although the ET methods affected simulated stream flow differently, the Spittlehouse method had more physical significance and gave better agreement between simulated and recorded stream flows. The results showed that using an ET method that included a soil moisture limitation to ET produced a worthwhile improvement in hydrological performance. © 1997 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/(SICI)1099-1085(19971030)11:13<1685::AID-HYP599>3.0.CO;2-T
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27414303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16230278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4509-49a6d352f12e98691fd8c1725ee5c90046003bb56f3790c7e0bad353e95b77d03</originalsourceid><addsrcrecordid>eNqNkV9v0zAUxSMEEmXwHfKA0PaQcm3HsV0Q0ghjqyh00G4IhHTlJs4ayJ9ip4N-exyl9AUkeLJs_3zO9TlB8JLAmADQp8eLaTo9IaBUREDyY6KUIMDghJAJYc9JIvlkcjp9FV18uuRKvWBjGKfzZzRa3glGh2d3gxFIyaMEpLgfPHDuKwDEIGEUXJ_d6mqru7K5Cbu1NSY0t3rTdlY3blNaf9E2YW26dZu7sGw8Y8LF7OrDZVjrzLYu05UJ17vctlV7U_pdWLe5qR4G9wpdOfNovx4FV6_PlulFNJufT9PTWZTFHFQUK53kjNOCUKNkokiRy4wIyo3hmfIzJgBsteJJwYSCTBhYac8zo_hKiBzYUfBk0N3Y9vvWuA7r0mWmqnRj2q1DKmISM2D_BElCGVAhPfh5APvfOWsK3Niy1naHBLDvBLHvBPtwsQ8Xf3eChCBh2HeC6DvBoRNkCJjOkeLSiz_eT6H75Aqfcla6gwOFBIhUHvsyYD_Kyuz-GOA__P9qvz_x8tEgX7rO_DzIa_sNE8EEx4_vznH29s17fg0JLtgvXrW8mQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16230278</pqid></control><display><type>article</type><title>Evaluating three evapotranspiration methods in the SLURP macroscale hydrological model</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Barr, Alan G. ; Kite, G. W. ; Granger, R. ; Smith, C.</creator><creatorcontrib>Barr, Alan G. ; Kite, G. W. ; Granger, R. ; Smith, C.</creatorcontrib><description>Hydrological models simulate the land phase component of the global water cycle and provide a mechanism for evaluating the effects of climatic variation and change on water resources. Evapotranspiration (ET) is a critical process within such models. This study evaluates three different methods for estimating ET in the simple lumped reservoir parametric model (SLURP), over a five‐year period in the Kootenay Basin of eastern British Columbia. The three ET methods were the Morton implementation of the Bouchet complementary relationship, the Granger modification of Penman's method and the Spittlehouse energy‐limited versus soil moisture‐limited method. We evaluated the three ET methods indirectly, based on the ability of the SLURP hydrological model to simulate daily stream flow over several annual cycles. Although the ET methods affected simulated stream flow differently, the Spittlehouse method had more physical significance and gave better agreement between simulated and recorded stream flows. The results showed that using an ET method that included a soil moisture limitation to ET produced a worthwhile improvement in hydrological performance. © 1997 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0885-6087</identifier><identifier>EISSN: 1099-1085</identifier><identifier>DOI: 10.1002/(SICI)1099-1085(19971030)11:13&lt;1685::AID-HYP599&gt;3.0.CO;2-T</identifier><identifier>CODEN: HYPRE3</identifier><language>eng</language><publisher>West Sussex: John Wiley &amp; Sons, Ltd</publisher><subject>Earth sciences ; Earth, ocean, space ; evaluation ; evapotranspiration models ; Exact sciences and technology ; Freshwater ; hydrological model ; Hydrology ; Hydrology. Hydrogeology</subject><ispartof>Hydrological processes, 1997-10, Vol.11 (13), p.1685-1705</ispartof><rights>Copyright © 1997 John Wiley &amp; Sons, Ltd.</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4509-49a6d352f12e98691fd8c1725ee5c90046003bb56f3790c7e0bad353e95b77d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23929,23930,25139,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2060189$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Barr, Alan G.</creatorcontrib><creatorcontrib>Kite, G. W.</creatorcontrib><creatorcontrib>Granger, R.</creatorcontrib><creatorcontrib>Smith, C.</creatorcontrib><title>Evaluating three evapotranspiration methods in the SLURP macroscale hydrological model</title><title>Hydrological processes</title><addtitle>Hydrol. Process</addtitle><description>Hydrological models simulate the land phase component of the global water cycle and provide a mechanism for evaluating the effects of climatic variation and change on water resources. Evapotranspiration (ET) is a critical process within such models. This study evaluates three different methods for estimating ET in the simple lumped reservoir parametric model (SLURP), over a five‐year period in the Kootenay Basin of eastern British Columbia. The three ET methods were the Morton implementation of the Bouchet complementary relationship, the Granger modification of Penman's method and the Spittlehouse energy‐limited versus soil moisture‐limited method. We evaluated the three ET methods indirectly, based on the ability of the SLURP hydrological model to simulate daily stream flow over several annual cycles. Although the ET methods affected simulated stream flow differently, the Spittlehouse method had more physical significance and gave better agreement between simulated and recorded stream flows. The results showed that using an ET method that included a soil moisture limitation to ET produced a worthwhile improvement in hydrological performance. © 1997 John Wiley &amp; Sons, Ltd.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>evaluation</subject><subject>evapotranspiration models</subject><subject>Exact sciences and technology</subject><subject>Freshwater</subject><subject>hydrological model</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><issn>0885-6087</issn><issn>1099-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqNkV9v0zAUxSMEEmXwHfKA0PaQcm3HsV0Q0ghjqyh00G4IhHTlJs4ayJ9ip4N-exyl9AUkeLJs_3zO9TlB8JLAmADQp8eLaTo9IaBUREDyY6KUIMDghJAJYc9JIvlkcjp9FV18uuRKvWBjGKfzZzRa3glGh2d3gxFIyaMEpLgfPHDuKwDEIGEUXJ_d6mqru7K5Cbu1NSY0t3rTdlY3blNaf9E2YW26dZu7sGw8Y8LF7OrDZVjrzLYu05UJ17vctlV7U_pdWLe5qR4G9wpdOfNovx4FV6_PlulFNJufT9PTWZTFHFQUK53kjNOCUKNkokiRy4wIyo3hmfIzJgBsteJJwYSCTBhYac8zo_hKiBzYUfBk0N3Y9vvWuA7r0mWmqnRj2q1DKmISM2D_BElCGVAhPfh5APvfOWsK3Niy1naHBLDvBLHvBPtwsQ8Xf3eChCBh2HeC6DvBoRNkCJjOkeLSiz_eT6H75Aqfcla6gwOFBIhUHvsyYD_Kyuz-GOA__P9qvz_x8tEgX7rO_DzIa_sNE8EEx4_vznH29s17fg0JLtgvXrW8mQ</recordid><startdate>19971030</startdate><enddate>19971030</enddate><creator>Barr, Alan G.</creator><creator>Kite, G. W.</creator><creator>Granger, R.</creator><creator>Smith, C.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>19971030</creationdate><title>Evaluating three evapotranspiration methods in the SLURP macroscale hydrological model</title><author>Barr, Alan G. ; Kite, G. W. ; Granger, R. ; Smith, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4509-49a6d352f12e98691fd8c1725ee5c90046003bb56f3790c7e0bad353e95b77d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>evaluation</topic><topic>evapotranspiration models</topic><topic>Exact sciences and technology</topic><topic>Freshwater</topic><topic>hydrological model</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barr, Alan G.</creatorcontrib><creatorcontrib>Kite, G. W.</creatorcontrib><creatorcontrib>Granger, R.</creatorcontrib><creatorcontrib>Smith, C.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Hydrological processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barr, Alan G.</au><au>Kite, G. W.</au><au>Granger, R.</au><au>Smith, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating three evapotranspiration methods in the SLURP macroscale hydrological model</atitle><jtitle>Hydrological processes</jtitle><addtitle>Hydrol. Process</addtitle><date>1997-10-30</date><risdate>1997</risdate><volume>11</volume><issue>13</issue><spage>1685</spage><epage>1705</epage><pages>1685-1705</pages><issn>0885-6087</issn><eissn>1099-1085</eissn><coden>HYPRE3</coden><abstract>Hydrological models simulate the land phase component of the global water cycle and provide a mechanism for evaluating the effects of climatic variation and change on water resources. Evapotranspiration (ET) is a critical process within such models. This study evaluates three different methods for estimating ET in the simple lumped reservoir parametric model (SLURP), over a five‐year period in the Kootenay Basin of eastern British Columbia. The three ET methods were the Morton implementation of the Bouchet complementary relationship, the Granger modification of Penman's method and the Spittlehouse energy‐limited versus soil moisture‐limited method. We evaluated the three ET methods indirectly, based on the ability of the SLURP hydrological model to simulate daily stream flow over several annual cycles. Although the ET methods affected simulated stream flow differently, the Spittlehouse method had more physical significance and gave better agreement between simulated and recorded stream flows. The results showed that using an ET method that included a soil moisture limitation to ET produced a worthwhile improvement in hydrological performance. © 1997 John Wiley &amp; Sons, Ltd.</abstract><cop>West Sussex</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/(SICI)1099-1085(19971030)11:13&lt;1685::AID-HYP599&gt;3.0.CO;2-T</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-6087
ispartof Hydrological processes, 1997-10, Vol.11 (13), p.1685-1705
issn 0885-6087
1099-1085
language eng
recordid cdi_proquest_miscellaneous_27414303
source Wiley-Blackwell Read & Publish Collection
subjects Earth sciences
Earth, ocean, space
evaluation
evapotranspiration models
Exact sciences and technology
Freshwater
hydrological model
Hydrology
Hydrology. Hydrogeology
title Evaluating three evapotranspiration methods in the SLURP macroscale hydrological model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20three%20evapotranspiration%20methods%20in%20the%20SLURP%20macroscale%20hydrological%20model&rft.jtitle=Hydrological%20processes&rft.au=Barr,%20Alan%20G.&rft.date=1997-10-30&rft.volume=11&rft.issue=13&rft.spage=1685&rft.epage=1705&rft.pages=1685-1705&rft.issn=0885-6087&rft.eissn=1099-1085&rft.coden=HYPRE3&rft_id=info:doi/10.1002/(SICI)1099-1085(19971030)11:13%3C1685::AID-HYP599%3E3.0.CO;2-T&rft_dat=%3Cproquest_cross%3E16230278%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4509-49a6d352f12e98691fd8c1725ee5c90046003bb56f3790c7e0bad353e95b77d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16230278&rft_id=info:pmid/&rfr_iscdi=true