Loading…

Evaluating partially observed survival histories: retrospective projection of covariate trajectories

The use of maximum likelihood methods in analysing times to failure in the presence of unobserved randomly changing covariates requires constrained optimization procedures. An alternative approach using a generalized version of the EM‐algorithm requires smoothed estimates of covariate values. Simila...

Full description

Saved in:
Bibliographic Details
Published in:Applied stochastic models and data analysis 1997-03, Vol.13 (1), p.1-13
Main Authors: Yashin, Anatoli I., Manton, Kenneth G., Lowrimore, Gene R.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 13
container_issue 1
container_start_page 1
container_title Applied stochastic models and data analysis
container_volume 13
creator Yashin, Anatoli I.
Manton, Kenneth G.
Lowrimore, Gene R.
description The use of maximum likelihood methods in analysing times to failure in the presence of unobserved randomly changing covariates requires constrained optimization procedures. An alternative approach using a generalized version of the EM‐algorithm requires smoothed estimates of covariate values. Similar estimates are needed in evaluating past exposures to hazardous chemicals, radiation or other toxic materials when health effects only become evident long after their use. In this paper, two kinds of equation for smoothing estimates of unobserved covariates in survival problems are derived. The first shows how new information may be used to update past estimates of the covariates' values. The second can be used to project the covariates' trajectory from the present to the past. If the hazard function is quadratic in form, both types of smoothing equation can be derived in a closed analytical form. Examples of both types of equation are presented. Use of these equations in the extended EM‐algorithm, and in estimating past exposures to hazardous materials, are discussed. © 1997 by John Wiley & Sons, Ltd.
doi_str_mv 10.1002/(SICI)1099-0747(199703)13:1<1::AID-ASM289>3.0.CO;2-E
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27421371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27421371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4839-b39132ffcbb8a7d82bfc603920176623e256751dfa49f6d7e79cf84f4e98e0ee3</originalsourceid><addsrcrecordid>eNp9kV9v0zAUxaMJpJXBd8gDQttDiv8kcVwmpCoro6Kskzbg8cpxrsEja4qdBvrtcUjVFxCyJV9dnfs79nEUXVIypYSw1-d3y3J5QYmUCRGpOKdSCsIvKJ_RSzqbzZdXyfzuIyvkWz4l03L9hiWLk2hyHHgSTQqRZUlgpafRM-8fCCEyp9kkqhe9anaqs5uv8Va5zqqm2cdt5dH1WMd-53obFPE367vWWfSz2GHnWr9F3dke461rH4ay3cStiXXbK2dVh3Hn1ND_M_M8empU4_HF4TyLPr1b3Jfvk9X6elnOV4lOCy6TikvKmTG6qgol6oJVRueES0aoyHPGkWW5yGhtVCpNXgsUUpsiNSnKAgkiP4tejdxwqR879B08Wq-xadQG250HJlJGuaBBeD8KdXiJd2hg6-yjcnugBIbIAYbIYUgQhgRhjBxo2GFBiBzGyIEDgXINDBYB-_Lgr7xWjXFqo60_sllOi4AJss-j7KdtcP-X9X-d_2l86ARwMoLDZ-GvI1i575ALLjL4cnMNt1kmPpCrFXD-GyNssns</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27421371</pqid></control><display><type>article</type><title>Evaluating partially observed survival histories: retrospective projection of covariate trajectories</title><source>Wiley</source><creator>Yashin, Anatoli I. ; Manton, Kenneth G. ; Lowrimore, Gene R.</creator><creatorcontrib>Yashin, Anatoli I. ; Manton, Kenneth G. ; Lowrimore, Gene R.</creatorcontrib><description>The use of maximum likelihood methods in analysing times to failure in the presence of unobserved randomly changing covariates requires constrained optimization procedures. An alternative approach using a generalized version of the EM‐algorithm requires smoothed estimates of covariate values. Similar estimates are needed in evaluating past exposures to hazardous chemicals, radiation or other toxic materials when health effects only become evident long after their use. In this paper, two kinds of equation for smoothing estimates of unobserved covariates in survival problems are derived. The first shows how new information may be used to update past estimates of the covariates' values. The second can be used to project the covariates' trajectory from the present to the past. If the hazard function is quadratic in form, both types of smoothing equation can be derived in a closed analytical form. Examples of both types of equation are presented. Use of these equations in the extended EM‐algorithm, and in estimating past exposures to hazardous materials, are discussed. © 1997 by John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 8755-0024</identifier><identifier>EISSN: 1099-0747</identifier><identifier>DOI: 10.1002/(SICI)1099-0747(199703)13:1&lt;1::AID-ASM289&gt;3.0.CO;2-E</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>evaluation of exposure ; Exact sciences and technology ; Inference from stochastic processes; time series analysis ; Mathematics ; Multivariate analysis ; Probability and statistics ; randomly changing covariates ; Sciences and techniques of general use ; smoothing equations ; Statistics ; survival analysis ; survival history</subject><ispartof>Applied stochastic models and data analysis, 1997-03, Vol.13 (1), p.1-13</ispartof><rights>Copyright © 1997 John Wiley &amp; Sons, Ltd.</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2618997$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yashin, Anatoli I.</creatorcontrib><creatorcontrib>Manton, Kenneth G.</creatorcontrib><creatorcontrib>Lowrimore, Gene R.</creatorcontrib><title>Evaluating partially observed survival histories: retrospective projection of covariate trajectories</title><title>Applied stochastic models and data analysis</title><addtitle>Appl. Stochastic Models Data Anal</addtitle><description>The use of maximum likelihood methods in analysing times to failure in the presence of unobserved randomly changing covariates requires constrained optimization procedures. An alternative approach using a generalized version of the EM‐algorithm requires smoothed estimates of covariate values. Similar estimates are needed in evaluating past exposures to hazardous chemicals, radiation or other toxic materials when health effects only become evident long after their use. In this paper, two kinds of equation for smoothing estimates of unobserved covariates in survival problems are derived. The first shows how new information may be used to update past estimates of the covariates' values. The second can be used to project the covariates' trajectory from the present to the past. If the hazard function is quadratic in form, both types of smoothing equation can be derived in a closed analytical form. Examples of both types of equation are presented. Use of these equations in the extended EM‐algorithm, and in estimating past exposures to hazardous materials, are discussed. © 1997 by John Wiley &amp; Sons, Ltd.</description><subject>evaluation of exposure</subject><subject>Exact sciences and technology</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Probability and statistics</subject><subject>randomly changing covariates</subject><subject>Sciences and techniques of general use</subject><subject>smoothing equations</subject><subject>Statistics</subject><subject>survival analysis</subject><subject>survival history</subject><issn>8755-0024</issn><issn>1099-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp9kV9v0zAUxaMJpJXBd8gDQttDiv8kcVwmpCoro6Kskzbg8cpxrsEja4qdBvrtcUjVFxCyJV9dnfs79nEUXVIypYSw1-d3y3J5QYmUCRGpOKdSCsIvKJ_RSzqbzZdXyfzuIyvkWz4l03L9hiWLk2hyHHgSTQqRZUlgpafRM-8fCCEyp9kkqhe9anaqs5uv8Va5zqqm2cdt5dH1WMd-53obFPE367vWWfSz2GHnWr9F3dke461rH4ay3cStiXXbK2dVh3Hn1ND_M_M8empU4_HF4TyLPr1b3Jfvk9X6elnOV4lOCy6TikvKmTG6qgol6oJVRueES0aoyHPGkWW5yGhtVCpNXgsUUpsiNSnKAgkiP4tejdxwqR879B08Wq-xadQG250HJlJGuaBBeD8KdXiJd2hg6-yjcnugBIbIAYbIYUgQhgRhjBxo2GFBiBzGyIEDgXINDBYB-_Lgr7xWjXFqo60_sllOi4AJss-j7KdtcP-X9X-d_2l86ARwMoLDZ-GvI1i575ALLjL4cnMNt1kmPpCrFXD-GyNssns</recordid><startdate>199703</startdate><enddate>199703</enddate><creator>Yashin, Anatoli I.</creator><creator>Manton, Kenneth G.</creator><creator>Lowrimore, Gene R.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>199703</creationdate><title>Evaluating partially observed survival histories: retrospective projection of covariate trajectories</title><author>Yashin, Anatoli I. ; Manton, Kenneth G. ; Lowrimore, Gene R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4839-b39132ffcbb8a7d82bfc603920176623e256751dfa49f6d7e79cf84f4e98e0ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>evaluation of exposure</topic><topic>Exact sciences and technology</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Probability and statistics</topic><topic>randomly changing covariates</topic><topic>Sciences and techniques of general use</topic><topic>smoothing equations</topic><topic>Statistics</topic><topic>survival analysis</topic><topic>survival history</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yashin, Anatoli I.</creatorcontrib><creatorcontrib>Manton, Kenneth G.</creatorcontrib><creatorcontrib>Lowrimore, Gene R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied stochastic models and data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yashin, Anatoli I.</au><au>Manton, Kenneth G.</au><au>Lowrimore, Gene R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating partially observed survival histories: retrospective projection of covariate trajectories</atitle><jtitle>Applied stochastic models and data analysis</jtitle><addtitle>Appl. Stochastic Models Data Anal</addtitle><date>1997-03</date><risdate>1997</risdate><volume>13</volume><issue>1</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>8755-0024</issn><eissn>1099-0747</eissn><abstract>The use of maximum likelihood methods in analysing times to failure in the presence of unobserved randomly changing covariates requires constrained optimization procedures. An alternative approach using a generalized version of the EM‐algorithm requires smoothed estimates of covariate values. Similar estimates are needed in evaluating past exposures to hazardous chemicals, radiation or other toxic materials when health effects only become evident long after their use. In this paper, two kinds of equation for smoothing estimates of unobserved covariates in survival problems are derived. The first shows how new information may be used to update past estimates of the covariates' values. The second can be used to project the covariates' trajectory from the present to the past. If the hazard function is quadratic in form, both types of smoothing equation can be derived in a closed analytical form. Examples of both types of equation are presented. Use of these equations in the extended EM‐algorithm, and in estimating past exposures to hazardous materials, are discussed. © 1997 by John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/(SICI)1099-0747(199703)13:1&lt;1::AID-ASM289&gt;3.0.CO;2-E</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 8755-0024
ispartof Applied stochastic models and data analysis, 1997-03, Vol.13 (1), p.1-13
issn 8755-0024
1099-0747
language eng
recordid cdi_proquest_miscellaneous_27421371
source Wiley
subjects evaluation of exposure
Exact sciences and technology
Inference from stochastic processes
time series analysis
Mathematics
Multivariate analysis
Probability and statistics
randomly changing covariates
Sciences and techniques of general use
smoothing equations
Statistics
survival analysis
survival history
title Evaluating partially observed survival histories: retrospective projection of covariate trajectories
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A58%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20partially%20observed%20survival%20histories:%20retrospective%20projection%20of%20covariate%20trajectories&rft.jtitle=Applied%20stochastic%20models%20and%20data%20analysis&rft.au=Yashin,%20Anatoli%20I.&rft.date=1997-03&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=8755-0024&rft.eissn=1099-0747&rft_id=info:doi/10.1002/(SICI)1099-0747(199703)13:1%3C1::AID-ASM289%3E3.0.CO;2-E&rft_dat=%3Cproquest_cross%3E27421371%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4839-b39132ffcbb8a7d82bfc603920176623e256751dfa49f6d7e79cf84f4e98e0ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27421371&rft_id=info:pmid/&rfr_iscdi=true