Loading…

Automated Hydrophobic Interaction Chromatography Screening Combined with In Silico Optimization as a Framework for Nondenaturing Analysis and Purification of Biopharmaceuticals

The mounting complexity of new modalities in the biopharmaceutical industry entails a commensurate level of analytical innovations to enable the rapid discovery and development of novel therapeutics and vaccines. Hydrophobic interaction chromatography (HIC) has become one of the widely preferred sep...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2022-12, Vol.94 (49), p.17131-17141
Main Authors: Barrientos, Rodell C., Losacco, Gioacchino Luca, Azizi, Mohammadmehdi, Wang, Heather, Nguyen, Anh Nguyet, Shchurik, Vladimir, Singh, Andrew, Richardson, Douglas, Mangion, Ian, Guillarme, Davy, Regalado, Erik L., Haidar Ahmad, Imad A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mounting complexity of new modalities in the biopharmaceutical industry entails a commensurate level of analytical innovations to enable the rapid discovery and development of novel therapeutics and vaccines. Hydrophobic interaction chromatography (HIC) has become one of the widely preferred separation techniques for the analysis and purification of biopharmaceuticals under nondenaturing conditions. Inarguably, HIC method development remains very challenging and labor-intensive owing to the numerous factors that are typically optimized by a “hit-or-miss” strategy (e.g., the nature of the salt, stationary phase chemistry, temperature, mobile phase additive, and ionic strength). Herein, we introduce a new HIC method development framework composed of a fully automated multicolumn and multieluent platform coupled with in silico multifactorial simulation and integrated fraction collection for streamlined method screening, optimization, and analytical-scale purification of biopharmaceutical targets. The power and versatility of this workflow are showcased by a wide range of applications including trivial proteins, monoclonal antibodies (mAbs), antibody–drug conjugates (ADCs), oxidation variants, and denatured proteins. We also illustrate convenient and rapid HIC method development outcomes from the effective combination of this screening setup with computer-assisted simulations. HIC retention models were built using readily available LC simulator software outlining less than a 5% difference between experimental and simulated retention times with a correlation coefficient of >0.99 for pharmaceutically relevant multicomponent mixtures. In addition, we demonstrate how this approach paves the path for a straightforward identification of first-dimension HIC conditions that are combined with mass spectrometry (MS)-friendly reversed-phase liquid chromatography (RPLC) detection in the second dimension (heart-cutting two-dimensional (2D)-HIC-RPLC-diode array detector (DAD)-MS), enabling the analysis and purification of biopharmaceutical targets.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.2c03453