Loading…

Modal Interaction in the Response of Antisymmetric Cross-Ply Laminated Rectangular Plates

A higher-order shear-deformation theory is used to analyze the interaction of two modes in the response of thick laminated rectangular plates to transverse harmonic loads. The case of a two-to-one au toparametric resonance is considered. Four first-order ordinary differential equations describing th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vibration and control 1995, Vol.1 (2), p.159-182
Main Authors: Hadian, J., Nayfeh, A.H., Nayfeh, J.F.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c326t-964de1a50cd0e5c6f2b3b2bed0f752d2eaf73bd2e3537141b1b23d8364c7bf03
cites cdi_FETCH-LOGICAL-c326t-964de1a50cd0e5c6f2b3b2bed0f752d2eaf73bd2e3537141b1b23d8364c7bf03
container_end_page 182
container_issue 2
container_start_page 159
container_title Journal of vibration and control
container_volume 1
creator Hadian, J.
Nayfeh, A.H.
Nayfeh, J.F.
description A higher-order shear-deformation theory is used to analyze the interaction of two modes in the response of thick laminated rectangular plates to transverse harmonic loads. The case of a two-to-one au toparametric resonance is considered. Four first-order ordinary differential equations describing the modula tion of the amplitudes and phases of the internally resonant modes are derived using the averaged Lagrangian when the higher mode is excited by a primary resonance. The fixed-point solutions are determined, and their stability is analyzed. It is shown that besides the single-mode solution, two-mode solutions exist for a certain range of parameters. It is further shown that, in the multimode case, the lower mode, which is indirectly excited through the internal resonance, may dominate the response. For a certain range of parameters, the fixed points lose stability via a Hopf bifurcation, thereby giving rise to limit-cycle solutions. It is shown that these limit cycles undergo a series of period-doubling bifurcations, culminating in chaos.
doi_str_mv 10.1177/107754639500100203
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27426897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_107754639500100203</sage_id><sourcerecordid>27426897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-964de1a50cd0e5c6f2b3b2bed0f752d2eaf73bd2e3537141b1b23d8364c7bf03</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzj5xC10_UjcHKuKR6UiKtQLp8hxNiVVYhfbOfTf46rckDjNavXNamcIuWfwyJhSMwZK5bIQZQ7AADiICzJhSrKMl_PiMs0JyE7ENbkJYQ8AUjKYkM831-iermxEr03snKWdpfEL6QeGg7MBqWvpwsYuHIcBo-8MXXoXQrbpj3Sth87qiE2iTdR2N_ba002fVuGWXLW6D3j3q1OyfX7aLl-z9fvLarlYZ0bwImZlIRtkOgfTAOamaHktal5jA63KecNRt0rUSUUuFJOsZjUXzVwU0qi6BTElD-ezB---RwyxGrpgsO-1RTeGiivJi3mpEsjPoDm977GtDr4btD9WDKpTidXfEpNpdjYFvcNq70ZvU5b_HD_-u3KT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27426897</pqid></control><display><type>article</type><title>Modal Interaction in the Response of Antisymmetric Cross-Ply Laminated Rectangular Plates</title><source>SAGE Deep Backfile 2012</source><creator>Hadian, J. ; Nayfeh, A.H. ; Nayfeh, J.F.</creator><creatorcontrib>Hadian, J. ; Nayfeh, A.H. ; Nayfeh, J.F.</creatorcontrib><description>A higher-order shear-deformation theory is used to analyze the interaction of two modes in the response of thick laminated rectangular plates to transverse harmonic loads. The case of a two-to-one au toparametric resonance is considered. Four first-order ordinary differential equations describing the modula tion of the amplitudes and phases of the internally resonant modes are derived using the averaged Lagrangian when the higher mode is excited by a primary resonance. The fixed-point solutions are determined, and their stability is analyzed. It is shown that besides the single-mode solution, two-mode solutions exist for a certain range of parameters. It is further shown that, in the multimode case, the lower mode, which is indirectly excited through the internal resonance, may dominate the response. For a certain range of parameters, the fixed points lose stability via a Hopf bifurcation, thereby giving rise to limit-cycle solutions. It is shown that these limit cycles undergo a series of period-doubling bifurcations, culminating in chaos.</description><identifier>ISSN: 1077-5463</identifier><identifier>EISSN: 1741-2986</identifier><identifier>DOI: 10.1177/107754639500100203</identifier><language>eng</language><publisher>Thousand Oaks, CA: SAGE Publications</publisher><ispartof>Journal of vibration and control, 1995, Vol.1 (2), p.159-182</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-964de1a50cd0e5c6f2b3b2bed0f752d2eaf73bd2e3537141b1b23d8364c7bf03</citedby><cites>FETCH-LOGICAL-c326t-964de1a50cd0e5c6f2b3b2bed0f752d2eaf73bd2e3537141b1b23d8364c7bf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/107754639500100203$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/107754639500100203$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,777,781,4010,21826,27904,27905,27906,45063,45451</link.rule.ids></links><search><creatorcontrib>Hadian, J.</creatorcontrib><creatorcontrib>Nayfeh, A.H.</creatorcontrib><creatorcontrib>Nayfeh, J.F.</creatorcontrib><title>Modal Interaction in the Response of Antisymmetric Cross-Ply Laminated Rectangular Plates</title><title>Journal of vibration and control</title><description>A higher-order shear-deformation theory is used to analyze the interaction of two modes in the response of thick laminated rectangular plates to transverse harmonic loads. The case of a two-to-one au toparametric resonance is considered. Four first-order ordinary differential equations describing the modula tion of the amplitudes and phases of the internally resonant modes are derived using the averaged Lagrangian when the higher mode is excited by a primary resonance. The fixed-point solutions are determined, and their stability is analyzed. It is shown that besides the single-mode solution, two-mode solutions exist for a certain range of parameters. It is further shown that, in the multimode case, the lower mode, which is indirectly excited through the internal resonance, may dominate the response. For a certain range of parameters, the fixed points lose stability via a Hopf bifurcation, thereby giving rise to limit-cycle solutions. It is shown that these limit cycles undergo a series of period-doubling bifurcations, culminating in chaos.</description><issn>1077-5463</issn><issn>1741-2986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwBzj5xC10_UjcHKuKR6UiKtQLp8hxNiVVYhfbOfTf46rckDjNavXNamcIuWfwyJhSMwZK5bIQZQ7AADiICzJhSrKMl_PiMs0JyE7ENbkJYQ8AUjKYkM831-iermxEr03snKWdpfEL6QeGg7MBqWvpwsYuHIcBo-8MXXoXQrbpj3Sth87qiE2iTdR2N_ba002fVuGWXLW6D3j3q1OyfX7aLl-z9fvLarlYZ0bwImZlIRtkOgfTAOamaHktal5jA63KecNRt0rUSUUuFJOsZjUXzVwU0qi6BTElD-ezB---RwyxGrpgsO-1RTeGiivJi3mpEsjPoDm977GtDr4btD9WDKpTidXfEpNpdjYFvcNq70ZvU5b_HD_-u3KT</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Hadian, J.</creator><creator>Nayfeh, A.H.</creator><creator>Nayfeh, J.F.</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>1995</creationdate><title>Modal Interaction in the Response of Antisymmetric Cross-Ply Laminated Rectangular Plates</title><author>Hadian, J. ; Nayfeh, A.H. ; Nayfeh, J.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-964de1a50cd0e5c6f2b3b2bed0f752d2eaf73bd2e3537141b1b23d8364c7bf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hadian, J.</creatorcontrib><creatorcontrib>Nayfeh, A.H.</creatorcontrib><creatorcontrib>Nayfeh, J.F.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of vibration and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hadian, J.</au><au>Nayfeh, A.H.</au><au>Nayfeh, J.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modal Interaction in the Response of Antisymmetric Cross-Ply Laminated Rectangular Plates</atitle><jtitle>Journal of vibration and control</jtitle><date>1995</date><risdate>1995</risdate><volume>1</volume><issue>2</issue><spage>159</spage><epage>182</epage><pages>159-182</pages><issn>1077-5463</issn><eissn>1741-2986</eissn><abstract>A higher-order shear-deformation theory is used to analyze the interaction of two modes in the response of thick laminated rectangular plates to transverse harmonic loads. The case of a two-to-one au toparametric resonance is considered. Four first-order ordinary differential equations describing the modula tion of the amplitudes and phases of the internally resonant modes are derived using the averaged Lagrangian when the higher mode is excited by a primary resonance. The fixed-point solutions are determined, and their stability is analyzed. It is shown that besides the single-mode solution, two-mode solutions exist for a certain range of parameters. It is further shown that, in the multimode case, the lower mode, which is indirectly excited through the internal resonance, may dominate the response. For a certain range of parameters, the fixed points lose stability via a Hopf bifurcation, thereby giving rise to limit-cycle solutions. It is shown that these limit cycles undergo a series of period-doubling bifurcations, culminating in chaos.</abstract><cop>Thousand Oaks, CA</cop><pub>SAGE Publications</pub><doi>10.1177/107754639500100203</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1077-5463
ispartof Journal of vibration and control, 1995, Vol.1 (2), p.159-182
issn 1077-5463
1741-2986
language eng
recordid cdi_proquest_miscellaneous_27426897
source SAGE Deep Backfile 2012
title Modal Interaction in the Response of Antisymmetric Cross-Ply Laminated Rectangular Plates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A39%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modal%20Interaction%20in%20the%20Response%20of%20Antisymmetric%20Cross-Ply%20Laminated%20Rectangular%20Plates&rft.jtitle=Journal%20of%20vibration%20and%20control&rft.au=Hadian,%20J.&rft.date=1995&rft.volume=1&rft.issue=2&rft.spage=159&rft.epage=182&rft.pages=159-182&rft.issn=1077-5463&rft.eissn=1741-2986&rft_id=info:doi/10.1177/107754639500100203&rft_dat=%3Cproquest_cross%3E27426897%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-964de1a50cd0e5c6f2b3b2bed0f752d2eaf73bd2e3537141b1b23d8364c7bf03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27426897&rft_id=info:pmid/&rft_sage_id=10.1177_107754639500100203&rfr_iscdi=true