Loading…
A membrane-based seawater electrolyser for hydrogen generation
Electrochemical saline water electrolysis using renewable energy as input is a highly desirable and sustainable method for the mass production of green hydrogen 1 – 7 ; however, its practical viability is seriously challenged by insufficient durability because of the electrode side reactions and cor...
Saved in:
Published in: | Nature (London) 2022-12, Vol.612 (7941), p.673-678 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electrochemical saline water electrolysis using renewable energy as input is a highly desirable and sustainable method for the mass production of green hydrogen
1
–
7
; however, its practical viability is seriously challenged by insufficient durability because of the electrode side reactions and corrosion issues arising from the complex components of seawater. Although catalyst engineering using polyanion coatings to suppress corrosion by chloride ions or creating highly selective electrocatalysts has been extensively exploited with modest success, it is still far from satisfactory for practical applications
8
–
14
. Indirect seawater splitting by using a pre-desalination process can avoid side-reaction and corrosion problems
15
–
21
, but it requires additional energy input, making it economically less attractive. In addition, the independent bulky desalination system makes seawater electrolysis systems less flexible in terms of size. Here we propose a direct seawater electrolysis method for hydrogen production that radically addresses the side-reaction and corrosion problems. A demonstration system was stably operated at a current density of 250 milliamperes per square centimetre for over 3,200 hours under practical application conditions without failure. This strategy realizes efficient, size-flexible and scalable direct seawater electrolysis in a way similar to freshwater splitting without a notable increase in operation cost, and has high potential for practical application. Importantly, this configuration and mechanism promises further applications in simultaneous water-based effluent treatment and resource recovery and hydrogen generation in one step.
An efficient and scalable direct seawater electrolysis method for hydrogen production that addresses the side-reaction and corrosion problems associated with using seawater instead of pure water is demonstrated. |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/s41586-022-05379-5 |