Loading…

Observational constraints on the dynamics of the interplanetary magnetic field dissipation range

The dissipation range for interplanetary magnetic field fluctuations is formed by those fluctuations with spatial scales comparable to the gyroradius or ion inertial length of a thermal ion. It is reasonable to assume that the dissipation range represents the final fate of magnetic energy that is tr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research 1998-03, Vol.103 (A3), p.4775-4787
Main Authors: Leamon, Robert J., Smith, Charles W., Ness, Norman F., Matthaeus, William H., Wong, Hung K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5070-acf49d6ce90000c021d981e4784c71d0b4986f8bd4de4dc35099915c36a418923
cites cdi_FETCH-LOGICAL-c5070-acf49d6ce90000c021d981e4784c71d0b4986f8bd4de4dc35099915c36a418923
container_end_page 4787
container_issue A3
container_start_page 4775
container_title Journal of Geophysical Research
container_volume 103
creator Leamon, Robert J.
Smith, Charles W.
Ness, Norman F.
Matthaeus, William H.
Wong, Hung K.
description The dissipation range for interplanetary magnetic field fluctuations is formed by those fluctuations with spatial scales comparable to the gyroradius or ion inertial length of a thermal ion. It is reasonable to assume that the dissipation range represents the final fate of magnetic energy that is transferred from the largest spatial scales via nonlinear processes until kinetic coupling with the background plasma removes the energy from the spectrum and heats the background distribution. Typically, the dissipation range at 1 AU sets in at spacecraft frame frequencies of a few tenths of a hertz. It is characterized by a steepening of the power spectrum and often demonstrates a bias of the polarization or magnetic helicity spectrum. We examine Wind observations of inertial and dissipation range spectra in an attempt to better understand the processes that form the dissipation range and how these processes depend on the ambient solar wind parameters (interplanetary magnetic field intensity, ambient proton density and temperature, etc.). We focus on stationary intervals with well‐defined inertial and dissipation range spectra. Our analysis shows that parallel‐propagating waves, such as Alfvén waves, are inconsistent with the data. MHD turbulence consisting of a partly slab and partly two‐dimensional (2‐D) composite geometry is consistent with the observations, while thermal paxticle interactions with the 2‐D component may be responsible for the formation of the dissipation range. Kinetic Alfvén waves propagating at large angles to the background magnetic field are also consistent with the observations and may form some portion of the 2‐D turbulence component.
doi_str_mv 10.1029/97JA03394
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27448677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27448677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5070-acf49d6ce90000c021d981e4784c71d0b4986f8bd4de4dc35099915c36a418923</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EElXpgTfIASFxCPgvcXwsFRRKRQFB4WZc2ymGNAl2CvTtcRvUG76sV_vNaHcAOETwFEHMzzgb9SEhnO6ADkZJGmMM8S7oQESzGGLM9kHP-3cYHk1SClEHvE5m3rgv2diqlEWkqtI3Ttqy8VFVRs2bifSqlAurQp9v-jAzri5kaRrpVtFCzsPPqii3ptCRtt7bemMXOVnOzQHYy2XhTe-vdsHT5cXj4CoeT4bXg_44VglkMJYqp1ynyvD1dgpipHmGDGUZVQxpOKM8S_Nspqk2VCuSQM45ShRJJUUZx6QLjlvf2lWfS-MbsbBemWK9aLX0AjNKs5SxAJ60oHKV987konZ2EU4RCIp1jGIbY2CP_kylV7LIw0XK-q0gxMspJwGDLfZtC7P630-Mhg99FHKHQRK3Eusb87OVSPchUkZYIp5vh-Imuz-f3vEXMSW_3xaPWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27448677</pqid></control><display><type>article</type><title>Observational constraints on the dynamics of the interplanetary magnetic field dissipation range</title><source>Wiley Online Library AGU Free Content</source><creator>Leamon, Robert J. ; Smith, Charles W. ; Ness, Norman F. ; Matthaeus, William H. ; Wong, Hung K.</creator><creatorcontrib>Leamon, Robert J. ; Smith, Charles W. ; Ness, Norman F. ; Matthaeus, William H. ; Wong, Hung K.</creatorcontrib><description>The dissipation range for interplanetary magnetic field fluctuations is formed by those fluctuations with spatial scales comparable to the gyroradius or ion inertial length of a thermal ion. It is reasonable to assume that the dissipation range represents the final fate of magnetic energy that is transferred from the largest spatial scales via nonlinear processes until kinetic coupling with the background plasma removes the energy from the spectrum and heats the background distribution. Typically, the dissipation range at 1 AU sets in at spacecraft frame frequencies of a few tenths of a hertz. It is characterized by a steepening of the power spectrum and often demonstrates a bias of the polarization or magnetic helicity spectrum. We examine Wind observations of inertial and dissipation range spectra in an attempt to better understand the processes that form the dissipation range and how these processes depend on the ambient solar wind parameters (interplanetary magnetic field intensity, ambient proton density and temperature, etc.). We focus on stationary intervals with well‐defined inertial and dissipation range spectra. Our analysis shows that parallel‐propagating waves, such as Alfvén waves, are inconsistent with the data. MHD turbulence consisting of a partly slab and partly two‐dimensional (2‐D) composite geometry is consistent with the observations, while thermal paxticle interactions with the 2‐D component may be responsible for the formation of the dissipation range. Kinetic Alfvén waves propagating at large angles to the background magnetic field are also consistent with the observations and may form some portion of the 2‐D turbulence component.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/97JA03394</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Astronomy ; Earth, ocean, space ; Exact sciences and technology ; Interplanetary space ; Solar electric and magnetic fields (including solar wind fields) ; Solar system</subject><ispartof>Journal of Geophysical Research, 1998-03, Vol.103 (A3), p.4775-4787</ispartof><rights>Copyright 1998 by the American Geophysical Union.</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5070-acf49d6ce90000c021d981e4784c71d0b4986f8bd4de4dc35099915c36a418923</citedby><cites>FETCH-LOGICAL-c5070-acf49d6ce90000c021d981e4784c71d0b4986f8bd4de4dc35099915c36a418923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F97JA03394$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F97JA03394$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2209493$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Leamon, Robert J.</creatorcontrib><creatorcontrib>Smith, Charles W.</creatorcontrib><creatorcontrib>Ness, Norman F.</creatorcontrib><creatorcontrib>Matthaeus, William H.</creatorcontrib><creatorcontrib>Wong, Hung K.</creatorcontrib><title>Observational constraints on the dynamics of the interplanetary magnetic field dissipation range</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>The dissipation range for interplanetary magnetic field fluctuations is formed by those fluctuations with spatial scales comparable to the gyroradius or ion inertial length of a thermal ion. It is reasonable to assume that the dissipation range represents the final fate of magnetic energy that is transferred from the largest spatial scales via nonlinear processes until kinetic coupling with the background plasma removes the energy from the spectrum and heats the background distribution. Typically, the dissipation range at 1 AU sets in at spacecraft frame frequencies of a few tenths of a hertz. It is characterized by a steepening of the power spectrum and often demonstrates a bias of the polarization or magnetic helicity spectrum. We examine Wind observations of inertial and dissipation range spectra in an attempt to better understand the processes that form the dissipation range and how these processes depend on the ambient solar wind parameters (interplanetary magnetic field intensity, ambient proton density and temperature, etc.). We focus on stationary intervals with well‐defined inertial and dissipation range spectra. Our analysis shows that parallel‐propagating waves, such as Alfvén waves, are inconsistent with the data. MHD turbulence consisting of a partly slab and partly two‐dimensional (2‐D) composite geometry is consistent with the observations, while thermal paxticle interactions with the 2‐D component may be responsible for the formation of the dissipation range. Kinetic Alfvén waves propagating at large angles to the background magnetic field are also consistent with the observations and may form some portion of the 2‐D turbulence component.</description><subject>Astronomy</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Interplanetary space</subject><subject>Solar electric and magnetic fields (including solar wind fields)</subject><subject>Solar system</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EElXpgTfIASFxCPgvcXwsFRRKRQFB4WZc2ymGNAl2CvTtcRvUG76sV_vNaHcAOETwFEHMzzgb9SEhnO6ADkZJGmMM8S7oQESzGGLM9kHP-3cYHk1SClEHvE5m3rgv2diqlEWkqtI3Ttqy8VFVRs2bifSqlAurQp9v-jAzri5kaRrpVtFCzsPPqii3ptCRtt7bemMXOVnOzQHYy2XhTe-vdsHT5cXj4CoeT4bXg_44VglkMJYqp1ynyvD1dgpipHmGDGUZVQxpOKM8S_Nspqk2VCuSQM45ShRJJUUZx6QLjlvf2lWfS-MbsbBemWK9aLX0AjNKs5SxAJ60oHKV987konZ2EU4RCIp1jGIbY2CP_kylV7LIw0XK-q0gxMspJwGDLfZtC7P630-Mhg99FHKHQRK3Eusb87OVSPchUkZYIp5vh-Imuz-f3vEXMSW_3xaPWA</recordid><startdate>19980301</startdate><enddate>19980301</enddate><creator>Leamon, Robert J.</creator><creator>Smith, Charles W.</creator><creator>Ness, Norman F.</creator><creator>Matthaeus, William H.</creator><creator>Wong, Hung K.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19980301</creationdate><title>Observational constraints on the dynamics of the interplanetary magnetic field dissipation range</title><author>Leamon, Robert J. ; Smith, Charles W. ; Ness, Norman F. ; Matthaeus, William H. ; Wong, Hung K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5070-acf49d6ce90000c021d981e4784c71d0b4986f8bd4de4dc35099915c36a418923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Astronomy</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Interplanetary space</topic><topic>Solar electric and magnetic fields (including solar wind fields)</topic><topic>Solar system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leamon, Robert J.</creatorcontrib><creatorcontrib>Smith, Charles W.</creatorcontrib><creatorcontrib>Ness, Norman F.</creatorcontrib><creatorcontrib>Matthaeus, William H.</creatorcontrib><creatorcontrib>Wong, Hung K.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leamon, Robert J.</au><au>Smith, Charles W.</au><au>Ness, Norman F.</au><au>Matthaeus, William H.</au><au>Wong, Hung K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observational constraints on the dynamics of the interplanetary magnetic field dissipation range</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>1998-03-01</date><risdate>1998</risdate><volume>103</volume><issue>A3</issue><spage>4775</spage><epage>4787</epage><pages>4775-4787</pages><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>The dissipation range for interplanetary magnetic field fluctuations is formed by those fluctuations with spatial scales comparable to the gyroradius or ion inertial length of a thermal ion. It is reasonable to assume that the dissipation range represents the final fate of magnetic energy that is transferred from the largest spatial scales via nonlinear processes until kinetic coupling with the background plasma removes the energy from the spectrum and heats the background distribution. Typically, the dissipation range at 1 AU sets in at spacecraft frame frequencies of a few tenths of a hertz. It is characterized by a steepening of the power spectrum and often demonstrates a bias of the polarization or magnetic helicity spectrum. We examine Wind observations of inertial and dissipation range spectra in an attempt to better understand the processes that form the dissipation range and how these processes depend on the ambient solar wind parameters (interplanetary magnetic field intensity, ambient proton density and temperature, etc.). We focus on stationary intervals with well‐defined inertial and dissipation range spectra. Our analysis shows that parallel‐propagating waves, such as Alfvén waves, are inconsistent with the data. MHD turbulence consisting of a partly slab and partly two‐dimensional (2‐D) composite geometry is consistent with the observations, while thermal paxticle interactions with the 2‐D component may be responsible for the formation of the dissipation range. Kinetic Alfvén waves propagating at large angles to the background magnetic field are also consistent with the observations and may form some portion of the 2‐D turbulence component.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/97JA03394</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research, 1998-03, Vol.103 (A3), p.4775-4787
issn 0148-0227
2156-2202
language eng
recordid cdi_proquest_miscellaneous_27448677
source Wiley Online Library AGU Free Content
subjects Astronomy
Earth, ocean, space
Exact sciences and technology
Interplanetary space
Solar electric and magnetic fields (including solar wind fields)
Solar system
title Observational constraints on the dynamics of the interplanetary magnetic field dissipation range
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observational%20constraints%20on%20the%20dynamics%20of%20the%20interplanetary%20magnetic%20field%20dissipation%20range&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Leamon,%20Robert%20J.&rft.date=1998-03-01&rft.volume=103&rft.issue=A3&rft.spage=4775&rft.epage=4787&rft.pages=4775-4787&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/97JA03394&rft_dat=%3Cproquest_cross%3E27448677%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5070-acf49d6ce90000c021d981e4784c71d0b4986f8bd4de4dc35099915c36a418923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27448677&rft_id=info:pmid/&rfr_iscdi=true