Loading…

An integrated ultrasonic sensor for monitoring gradual wear on-line during turning operations

The condition of the tool and the cutting process are essential inputs to any productivity improvements through process optimization in conventional and unmanned machining. Tool replacement and tool wear compensation strategies, which are based on prior experience and/or tool history are, in general...

Full description

Saved in:
Bibliographic Details
Published in:International journal of machine tools & manufacture 1995-10, Vol.35 (10), p.1385-1395
Main Authors: Nayfeh, Taysir H., Eyada, Osama K., Duke, John C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The condition of the tool and the cutting process are essential inputs to any productivity improvements through process optimization in conventional and unmanned machining. Tool replacement and tool wear compensation strategies, which are based on prior experience and/or tool history are, in general, under performing. Currently, the methods of tool condition monitoring are either time consuming, as in the case of off-line direct measurements of the tool, or are modestly successful, as in the case of the on-line indirect measurements, such as forces or acoustic emissions. This in part is due to the lack of suitable sensors and/or exact dynamic model, which relate the indirect measurements to the actual tool condition. This paper describes a promising ultrasonic method for on-line direct measurement of gradual wear in turning operations. An integrated (transmit and receive) single ultrasonic transducer operating at a frequency of 10 MHz is placed in contact with the tool. The change in the amount of the reflected energy from the nose and the flanks of the tool can be related to the level of gradual wear and the mechanical integrity of the tool. The experimental results show that under laboratory conditions, a correlation exists between the ultrasonic measurement and gradual wear and that it is tool dependent.
ISSN:0890-6955
1879-2170
DOI:10.1016/0890-6955(94)00126-5