Loading…

Two-stage preparation of highly mesoporous carbon for super-adsorption of paracetamol and tetracycline in water: Important contribution of pore filling and π-π interaction

This study aimed to develop an extremely highly porous activated carbon derived from soybean curd residues (SCB-AC) through two-step pyrolyzing coupled with KOH activating process and then apply it for removing paracetamol (PRC) and tetracycline (TCH) from water. The optimal conditions for chemical...

Full description

Saved in:
Bibliographic Details
Published in:Environmental research 2023-02, Vol.218, p.114927-114927, Article 114927
Main Authors: Ninh, Pham Thanh Trung, Ngoc Tuyen, Le Thi, Dat, Nguyen Duy, Nguyen, My Linh, Dong, Nguyen Thanh, Chao, Huan-Ping, Tran, Hai Nguyen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aimed to develop an extremely highly porous activated carbon derived from soybean curd residues (SCB-AC) through two-step pyrolyzing coupled with KOH activating process and then apply it for removing paracetamol (PRC) and tetracycline (TCH) from water. The optimal conditions for chemical activation were 800 °C and the ratio of KOH to material (4/1; wt./wt.). SCB-AC adsorbents (before and after adsorption) were characterized by Brunauer-Emmet-Teller (BET) analyser, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy, and Raman spectroscopy. Adsorption kinetics, isotherm, and thermodynamics were concluded under batch experiments. The effects of pH (2–10) and NaCl (0–1 M) on adsorption processes were investigated. Reusable properties of laden SCB-AC were evaluated by studying desorption and cycles of adsorption/desorption. Results indicated that SCB-AC exhibited a large specific surface area (3306 m2/g) and high total pore volume (2.307 cm3/g), with mesoporous volume accounting for 86.9%. Its porosity characteristics (average pore width: 2.725 nm) are very appropriate for adsorbing two pharmaceuticals through pore-filling mechanism. Adsorption processes were less affected by the parameters: pH, NaCl, and water matrixes. The kinetics for adsorbing PRC reached a faster equilibrium than that for TCH. The Langmuir maximum adsorption capacity of SCB-AC (pHeq 7.0 and 25 °C) was 1235 mg/g (for adsorbing TCH) and 646 mg/g (PRC). Pore filling (confirmed by BET analyser) and π-π interaction (confirmed by FTIR and Raman spectroscopy) were dominant adsorption mechanisms. Those mechanisms were physisorption (ΔH° = 13.71 and −21.04 kJ/mol for adsorbing TCH and PRC, respectively). SCB-AC can serve as an outstanding material for removing pharmaceuticals from water.
ISSN:0013-9351
1096-0953
DOI:10.1016/j.envres.2022.114927