Loading…
Spatiotemporally Actuated Hydrogel by Magnetic Swarm Nanorobotics
Magnetic nanorobotic swarms can mimic collective functions of organisms in nature and be programmed for flexible spatiotemporal control. In this work, different assemblies of magnetic nanoparticle (MNP) swarms were constructed. Temperature-sensitive hydrogels were used as carriers to fix the distrib...
Saved in:
Published in: | ACS nano 2022-12, Vol.16 (12), p.20985-21001 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Magnetic nanorobotic swarms can mimic collective functions of organisms in nature and be programmed for flexible spatiotemporal control. In this work, different assemblies of magnetic nanoparticle (MNP) swarms were constructed. Temperature-sensitive hydrogels were used as carriers to fix the distribution and ensure the stability of the swarm structure and the biocompatibility of the microrobot. Under three different outfield assembly strategies (gravitational field, gradient magnetic field, and uniform magnetic field), six different assembly modes of MNP are encapsulated (three unilateral unfolding assemblies with different microsphere profiles, unilateral chain assembly, and two symmetric chain assemblies with different magnetic chain positions). Their differences in the execution of motion, magnetothermal effects, and release of loaded DOX drugs were explored. The results showed that the symmetrical chain assembly with the magnetic chain distributed on the outside showed the best performance due to the advantage of the magnetic moment. It has a speed of up to 600 μm/s and a temperature rise rate of up to 1.5 °C/min. The present work provides an excellent solution to the poor MNP cluster distribution stability problem and enriches the assembly control scheme of microrobots in medical, catalytic, and three-dimensional-printing fields. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.2c08626 |