Loading…
Adaptive finite element computational fluid dynamics using an anisotropic error estimator
The aim of this paper is to present the results on finite element adaptive strategies for computational fluid dynamics (CFD) problems with singularities arising from shock phenomena and/or discontinuous boundary data. The adaptive analysis is based on an optimal-mesh-adaptive strategy which is emplo...
Saved in:
Published in: | Computer methods in applied mechanics and engineering 2000-02, Vol.182 (3), p.379-400 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-bef703a677d90b6a0a9623f556669108c38a640dc67cb85fbc952d4f0317bd653 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-bef703a677d90b6a0a9623f556669108c38a640dc67cb85fbc952d4f0317bd653 |
container_end_page | 400 |
container_issue | 3 |
container_start_page | 379 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 182 |
creator | Almeida, Regina C. Feijóo, Raúl A. Galeão, Augusto C. Padra, Claudio Silva, Renato S. |
description | The aim of this paper is to present the results on finite element adaptive strategies for computational fluid dynamics (CFD) problems with singularities arising from shock phenomena and/or discontinuous boundary data. The adaptive analysis is based on an optimal-mesh-adaptive strategy which is employed to refine the mesh, stretch and orient the elements in such a way that, along the adaptation process, the mesh becomes aligned with the discontinuities. This mesh adaptation process yields improved results in locating regions of rapid or abrupt variations of the variables, whose location is not known a priori. On the other hand, the proposed mesh adaptation process is generated by minimizing, for a given number of elements in the mesh, a new anisotropic error estimator based on local directional interpolation error and recovering of the second derivatives of the finite element solution. Several adaptive mesh-refinement solutions for interpolation problems are presented in order to show that the proposed optimal adaptive strategy using this anisotropic error estimator recovers optimal and/or superconvergent rates. Finally, applications of this approach to CFD problems are also presented in order to show the computational performance of the proposed optimal adaptive procedure. |
doi_str_mv | 10.1016/S0045-7825(99)00200-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27480838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782599002005</els_id><sourcerecordid>27480838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-bef703a677d90b6a0a9623f556669108c38a640dc67cb85fbc952d4f0317bd653</originalsourceid><addsrcrecordid>eNqFkE9rFjEQh4Mo-Fr9CEIOpehhNdls_p1KKbYKBQ-2h55CNpmUlN1km2QL_fbdt2_Ro2Egl2fmN_Mg9JmSb5RQ8f0PIQPvpOr5F62_EtIT0vE3aEeV1F1PmXqLdn-R9-hDrfdke4r2O3R75u3S4iPgEFNsgGGCGVLDLs_L2myLOdkJh2mNHvunZOfoKl5rTHfYpq1iza3kJToMpeSCobY425bLR_Qu2KnCp9f_CN1c_Lg-_9ld_b78dX521TkmZOtGCJIwK6T0mozCEqtFzwLnQghNiXJMWTEQ74R0o-JhdJr3fgiEUTl6wdkROjnMXUp-WLd4M8fqYJpsgrxW08tBEcXUBvID6EqutUAwS9lWLU-GErMXaV5Emr0lo7V5EWn2AcevAbY6O4Vik4v1X3Ov2aD0hp0eMNiOfYxQTHURkgMfC7hmfI7_CXoGlBqIhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27480838</pqid></control><display><type>article</type><title>Adaptive finite element computational fluid dynamics using an anisotropic error estimator</title><source>ScienceDirect Freedom Collection</source><creator>Almeida, Regina C. ; Feijóo, Raúl A. ; Galeão, Augusto C. ; Padra, Claudio ; Silva, Renato S.</creator><creatorcontrib>Almeida, Regina C. ; Feijóo, Raúl A. ; Galeão, Augusto C. ; Padra, Claudio ; Silva, Renato S.</creatorcontrib><description>The aim of this paper is to present the results on finite element adaptive strategies for computational fluid dynamics (CFD) problems with singularities arising from shock phenomena and/or discontinuous boundary data. The adaptive analysis is based on an optimal-mesh-adaptive strategy which is employed to refine the mesh, stretch and orient the elements in such a way that, along the adaptation process, the mesh becomes aligned with the discontinuities. This mesh adaptation process yields improved results in locating regions of rapid or abrupt variations of the variables, whose location is not known a priori. On the other hand, the proposed mesh adaptation process is generated by minimizing, for a given number of elements in the mesh, a new anisotropic error estimator based on local directional interpolation error and recovering of the second derivatives of the finite element solution. Several adaptive mesh-refinement solutions for interpolation problems are presented in order to show that the proposed optimal adaptive strategy using this anisotropic error estimator recovers optimal and/or superconvergent rates. Finally, applications of this approach to CFD problems are also presented in order to show the computational performance of the proposed optimal adaptive procedure.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/S0045-7825(99)00200-5</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adaptive analysis ; Computational fluid dynamics ; Computational methods in fluid dynamics ; Computational techniques ; Error estimator ; Exact sciences and technology ; Finite elements ; Finite-element and galerkin methods ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Mathematical methods in physics ; Mesh generation ; Physics</subject><ispartof>Computer methods in applied mechanics and engineering, 2000-02, Vol.182 (3), p.379-400</ispartof><rights>2000 Elsevier Science S.A.</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-bef703a677d90b6a0a9623f556669108c38a640dc67cb85fbc952d4f0317bd653</citedby><cites>FETCH-LOGICAL-c367t-bef703a677d90b6a0a9623f556669108c38a640dc67cb85fbc952d4f0317bd653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1293489$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Almeida, Regina C.</creatorcontrib><creatorcontrib>Feijóo, Raúl A.</creatorcontrib><creatorcontrib>Galeão, Augusto C.</creatorcontrib><creatorcontrib>Padra, Claudio</creatorcontrib><creatorcontrib>Silva, Renato S.</creatorcontrib><title>Adaptive finite element computational fluid dynamics using an anisotropic error estimator</title><title>Computer methods in applied mechanics and engineering</title><description>The aim of this paper is to present the results on finite element adaptive strategies for computational fluid dynamics (CFD) problems with singularities arising from shock phenomena and/or discontinuous boundary data. The adaptive analysis is based on an optimal-mesh-adaptive strategy which is employed to refine the mesh, stretch and orient the elements in such a way that, along the adaptation process, the mesh becomes aligned with the discontinuities. This mesh adaptation process yields improved results in locating regions of rapid or abrupt variations of the variables, whose location is not known a priori. On the other hand, the proposed mesh adaptation process is generated by minimizing, for a given number of elements in the mesh, a new anisotropic error estimator based on local directional interpolation error and recovering of the second derivatives of the finite element solution. Several adaptive mesh-refinement solutions for interpolation problems are presented in order to show that the proposed optimal adaptive strategy using this anisotropic error estimator recovers optimal and/or superconvergent rates. Finally, applications of this approach to CFD problems are also presented in order to show the computational performance of the proposed optimal adaptive procedure.</description><subject>Adaptive analysis</subject><subject>Computational fluid dynamics</subject><subject>Computational methods in fluid dynamics</subject><subject>Computational techniques</subject><subject>Error estimator</subject><subject>Exact sciences and technology</subject><subject>Finite elements</subject><subject>Finite-element and galerkin methods</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical methods in physics</subject><subject>Mesh generation</subject><subject>Physics</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkE9rFjEQh4Mo-Fr9CEIOpehhNdls_p1KKbYKBQ-2h55CNpmUlN1km2QL_fbdt2_Ro2Egl2fmN_Mg9JmSb5RQ8f0PIQPvpOr5F62_EtIT0vE3aEeV1F1PmXqLdn-R9-hDrfdke4r2O3R75u3S4iPgEFNsgGGCGVLDLs_L2myLOdkJh2mNHvunZOfoKl5rTHfYpq1iza3kJToMpeSCobY425bLR_Qu2KnCp9f_CN1c_Lg-_9ld_b78dX521TkmZOtGCJIwK6T0mozCEqtFzwLnQghNiXJMWTEQ74R0o-JhdJr3fgiEUTl6wdkROjnMXUp-WLd4M8fqYJpsgrxW08tBEcXUBvID6EqutUAwS9lWLU-GErMXaV5Emr0lo7V5EWn2AcevAbY6O4Vik4v1X3Ov2aD0hp0eMNiOfYxQTHURkgMfC7hmfI7_CXoGlBqIhQ</recordid><startdate>20000218</startdate><enddate>20000218</enddate><creator>Almeida, Regina C.</creator><creator>Feijóo, Raúl A.</creator><creator>Galeão, Augusto C.</creator><creator>Padra, Claudio</creator><creator>Silva, Renato S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20000218</creationdate><title>Adaptive finite element computational fluid dynamics using an anisotropic error estimator</title><author>Almeida, Regina C. ; Feijóo, Raúl A. ; Galeão, Augusto C. ; Padra, Claudio ; Silva, Renato S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-bef703a677d90b6a0a9623f556669108c38a640dc67cb85fbc952d4f0317bd653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adaptive analysis</topic><topic>Computational fluid dynamics</topic><topic>Computational methods in fluid dynamics</topic><topic>Computational techniques</topic><topic>Error estimator</topic><topic>Exact sciences and technology</topic><topic>Finite elements</topic><topic>Finite-element and galerkin methods</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical methods in physics</topic><topic>Mesh generation</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almeida, Regina C.</creatorcontrib><creatorcontrib>Feijóo, Raúl A.</creatorcontrib><creatorcontrib>Galeão, Augusto C.</creatorcontrib><creatorcontrib>Padra, Claudio</creatorcontrib><creatorcontrib>Silva, Renato S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almeida, Regina C.</au><au>Feijóo, Raúl A.</au><au>Galeão, Augusto C.</au><au>Padra, Claudio</au><au>Silva, Renato S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive finite element computational fluid dynamics using an anisotropic error estimator</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2000-02-18</date><risdate>2000</risdate><volume>182</volume><issue>3</issue><spage>379</spage><epage>400</epage><pages>379-400</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>The aim of this paper is to present the results on finite element adaptive strategies for computational fluid dynamics (CFD) problems with singularities arising from shock phenomena and/or discontinuous boundary data. The adaptive analysis is based on an optimal-mesh-adaptive strategy which is employed to refine the mesh, stretch and orient the elements in such a way that, along the adaptation process, the mesh becomes aligned with the discontinuities. This mesh adaptation process yields improved results in locating regions of rapid or abrupt variations of the variables, whose location is not known a priori. On the other hand, the proposed mesh adaptation process is generated by minimizing, for a given number of elements in the mesh, a new anisotropic error estimator based on local directional interpolation error and recovering of the second derivatives of the finite element solution. Several adaptive mesh-refinement solutions for interpolation problems are presented in order to show that the proposed optimal adaptive strategy using this anisotropic error estimator recovers optimal and/or superconvergent rates. Finally, applications of this approach to CFD problems are also presented in order to show the computational performance of the proposed optimal adaptive procedure.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0045-7825(99)00200-5</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2000-02, Vol.182 (3), p.379-400 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_miscellaneous_27480838 |
source | ScienceDirect Freedom Collection |
subjects | Adaptive analysis Computational fluid dynamics Computational methods in fluid dynamics Computational techniques Error estimator Exact sciences and technology Finite elements Finite-element and galerkin methods Fluid dynamics Fundamental areas of phenomenology (including applications) Mathematical methods in physics Mesh generation Physics |
title | Adaptive finite element computational fluid dynamics using an anisotropic error estimator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A03%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20finite%20element%20computational%20fluid%20dynamics%20using%20an%20anisotropic%20error%20estimator&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Almeida,%20Regina%20C.&rft.date=2000-02-18&rft.volume=182&rft.issue=3&rft.spage=379&rft.epage=400&rft.pages=379-400&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/S0045-7825(99)00200-5&rft_dat=%3Cproquest_cross%3E27480838%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-bef703a677d90b6a0a9623f556669108c38a640dc67cb85fbc952d4f0317bd653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27480838&rft_id=info:pmid/&rfr_iscdi=true |