Loading…

Adaptive finite element computational fluid dynamics using an anisotropic error estimator

The aim of this paper is to present the results on finite element adaptive strategies for computational fluid dynamics (CFD) problems with singularities arising from shock phenomena and/or discontinuous boundary data. The adaptive analysis is based on an optimal-mesh-adaptive strategy which is emplo...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering 2000-02, Vol.182 (3), p.379-400
Main Authors: Almeida, Regina C., Feijóo, Raúl A., Galeão, Augusto C., Padra, Claudio, Silva, Renato S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-bef703a677d90b6a0a9623f556669108c38a640dc67cb85fbc952d4f0317bd653
cites cdi_FETCH-LOGICAL-c367t-bef703a677d90b6a0a9623f556669108c38a640dc67cb85fbc952d4f0317bd653
container_end_page 400
container_issue 3
container_start_page 379
container_title Computer methods in applied mechanics and engineering
container_volume 182
creator Almeida, Regina C.
Feijóo, Raúl A.
Galeão, Augusto C.
Padra, Claudio
Silva, Renato S.
description The aim of this paper is to present the results on finite element adaptive strategies for computational fluid dynamics (CFD) problems with singularities arising from shock phenomena and/or discontinuous boundary data. The adaptive analysis is based on an optimal-mesh-adaptive strategy which is employed to refine the mesh, stretch and orient the elements in such a way that, along the adaptation process, the mesh becomes aligned with the discontinuities. This mesh adaptation process yields improved results in locating regions of rapid or abrupt variations of the variables, whose location is not known a priori. On the other hand, the proposed mesh adaptation process is generated by minimizing, for a given number of elements in the mesh, a new anisotropic error estimator based on local directional interpolation error and recovering of the second derivatives of the finite element solution. Several adaptive mesh-refinement solutions for interpolation problems are presented in order to show that the proposed optimal adaptive strategy using this anisotropic error estimator recovers optimal and/or superconvergent rates. Finally, applications of this approach to CFD problems are also presented in order to show the computational performance of the proposed optimal adaptive procedure.
doi_str_mv 10.1016/S0045-7825(99)00200-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27480838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782599002005</els_id><sourcerecordid>27480838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-bef703a677d90b6a0a9623f556669108c38a640dc67cb85fbc952d4f0317bd653</originalsourceid><addsrcrecordid>eNqFkE9rFjEQh4Mo-Fr9CEIOpehhNdls_p1KKbYKBQ-2h55CNpmUlN1km2QL_fbdt2_Ro2Egl2fmN_Mg9JmSb5RQ8f0PIQPvpOr5F62_EtIT0vE3aEeV1F1PmXqLdn-R9-hDrfdke4r2O3R75u3S4iPgEFNsgGGCGVLDLs_L2myLOdkJh2mNHvunZOfoKl5rTHfYpq1iza3kJToMpeSCobY425bLR_Qu2KnCp9f_CN1c_Lg-_9ld_b78dX521TkmZOtGCJIwK6T0mozCEqtFzwLnQghNiXJMWTEQ74R0o-JhdJr3fgiEUTl6wdkROjnMXUp-WLd4M8fqYJpsgrxW08tBEcXUBvID6EqutUAwS9lWLU-GErMXaV5Emr0lo7V5EWn2AcevAbY6O4Vik4v1X3Ov2aD0hp0eMNiOfYxQTHURkgMfC7hmfI7_CXoGlBqIhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27480838</pqid></control><display><type>article</type><title>Adaptive finite element computational fluid dynamics using an anisotropic error estimator</title><source>ScienceDirect Freedom Collection</source><creator>Almeida, Regina C. ; Feijóo, Raúl A. ; Galeão, Augusto C. ; Padra, Claudio ; Silva, Renato S.</creator><creatorcontrib>Almeida, Regina C. ; Feijóo, Raúl A. ; Galeão, Augusto C. ; Padra, Claudio ; Silva, Renato S.</creatorcontrib><description>The aim of this paper is to present the results on finite element adaptive strategies for computational fluid dynamics (CFD) problems with singularities arising from shock phenomena and/or discontinuous boundary data. The adaptive analysis is based on an optimal-mesh-adaptive strategy which is employed to refine the mesh, stretch and orient the elements in such a way that, along the adaptation process, the mesh becomes aligned with the discontinuities. This mesh adaptation process yields improved results in locating regions of rapid or abrupt variations of the variables, whose location is not known a priori. On the other hand, the proposed mesh adaptation process is generated by minimizing, for a given number of elements in the mesh, a new anisotropic error estimator based on local directional interpolation error and recovering of the second derivatives of the finite element solution. Several adaptive mesh-refinement solutions for interpolation problems are presented in order to show that the proposed optimal adaptive strategy using this anisotropic error estimator recovers optimal and/or superconvergent rates. Finally, applications of this approach to CFD problems are also presented in order to show the computational performance of the proposed optimal adaptive procedure.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/S0045-7825(99)00200-5</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adaptive analysis ; Computational fluid dynamics ; Computational methods in fluid dynamics ; Computational techniques ; Error estimator ; Exact sciences and technology ; Finite elements ; Finite-element and galerkin methods ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Mathematical methods in physics ; Mesh generation ; Physics</subject><ispartof>Computer methods in applied mechanics and engineering, 2000-02, Vol.182 (3), p.379-400</ispartof><rights>2000 Elsevier Science S.A.</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-bef703a677d90b6a0a9623f556669108c38a640dc67cb85fbc952d4f0317bd653</citedby><cites>FETCH-LOGICAL-c367t-bef703a677d90b6a0a9623f556669108c38a640dc67cb85fbc952d4f0317bd653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1293489$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Almeida, Regina C.</creatorcontrib><creatorcontrib>Feijóo, Raúl A.</creatorcontrib><creatorcontrib>Galeão, Augusto C.</creatorcontrib><creatorcontrib>Padra, Claudio</creatorcontrib><creatorcontrib>Silva, Renato S.</creatorcontrib><title>Adaptive finite element computational fluid dynamics using an anisotropic error estimator</title><title>Computer methods in applied mechanics and engineering</title><description>The aim of this paper is to present the results on finite element adaptive strategies for computational fluid dynamics (CFD) problems with singularities arising from shock phenomena and/or discontinuous boundary data. The adaptive analysis is based on an optimal-mesh-adaptive strategy which is employed to refine the mesh, stretch and orient the elements in such a way that, along the adaptation process, the mesh becomes aligned with the discontinuities. This mesh adaptation process yields improved results in locating regions of rapid or abrupt variations of the variables, whose location is not known a priori. On the other hand, the proposed mesh adaptation process is generated by minimizing, for a given number of elements in the mesh, a new anisotropic error estimator based on local directional interpolation error and recovering of the second derivatives of the finite element solution. Several adaptive mesh-refinement solutions for interpolation problems are presented in order to show that the proposed optimal adaptive strategy using this anisotropic error estimator recovers optimal and/or superconvergent rates. Finally, applications of this approach to CFD problems are also presented in order to show the computational performance of the proposed optimal adaptive procedure.</description><subject>Adaptive analysis</subject><subject>Computational fluid dynamics</subject><subject>Computational methods in fluid dynamics</subject><subject>Computational techniques</subject><subject>Error estimator</subject><subject>Exact sciences and technology</subject><subject>Finite elements</subject><subject>Finite-element and galerkin methods</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical methods in physics</subject><subject>Mesh generation</subject><subject>Physics</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkE9rFjEQh4Mo-Fr9CEIOpehhNdls_p1KKbYKBQ-2h55CNpmUlN1km2QL_fbdt2_Ro2Egl2fmN_Mg9JmSb5RQ8f0PIQPvpOr5F62_EtIT0vE3aEeV1F1PmXqLdn-R9-hDrfdke4r2O3R75u3S4iPgEFNsgGGCGVLDLs_L2myLOdkJh2mNHvunZOfoKl5rTHfYpq1iza3kJToMpeSCobY425bLR_Qu2KnCp9f_CN1c_Lg-_9ld_b78dX521TkmZOtGCJIwK6T0mozCEqtFzwLnQghNiXJMWTEQ74R0o-JhdJr3fgiEUTl6wdkROjnMXUp-WLd4M8fqYJpsgrxW08tBEcXUBvID6EqutUAwS9lWLU-GErMXaV5Emr0lo7V5EWn2AcevAbY6O4Vik4v1X3Ov2aD0hp0eMNiOfYxQTHURkgMfC7hmfI7_CXoGlBqIhQ</recordid><startdate>20000218</startdate><enddate>20000218</enddate><creator>Almeida, Regina C.</creator><creator>Feijóo, Raúl A.</creator><creator>Galeão, Augusto C.</creator><creator>Padra, Claudio</creator><creator>Silva, Renato S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20000218</creationdate><title>Adaptive finite element computational fluid dynamics using an anisotropic error estimator</title><author>Almeida, Regina C. ; Feijóo, Raúl A. ; Galeão, Augusto C. ; Padra, Claudio ; Silva, Renato S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-bef703a677d90b6a0a9623f556669108c38a640dc67cb85fbc952d4f0317bd653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adaptive analysis</topic><topic>Computational fluid dynamics</topic><topic>Computational methods in fluid dynamics</topic><topic>Computational techniques</topic><topic>Error estimator</topic><topic>Exact sciences and technology</topic><topic>Finite elements</topic><topic>Finite-element and galerkin methods</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical methods in physics</topic><topic>Mesh generation</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almeida, Regina C.</creatorcontrib><creatorcontrib>Feijóo, Raúl A.</creatorcontrib><creatorcontrib>Galeão, Augusto C.</creatorcontrib><creatorcontrib>Padra, Claudio</creatorcontrib><creatorcontrib>Silva, Renato S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almeida, Regina C.</au><au>Feijóo, Raúl A.</au><au>Galeão, Augusto C.</au><au>Padra, Claudio</au><au>Silva, Renato S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive finite element computational fluid dynamics using an anisotropic error estimator</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2000-02-18</date><risdate>2000</risdate><volume>182</volume><issue>3</issue><spage>379</spage><epage>400</epage><pages>379-400</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>The aim of this paper is to present the results on finite element adaptive strategies for computational fluid dynamics (CFD) problems with singularities arising from shock phenomena and/or discontinuous boundary data. The adaptive analysis is based on an optimal-mesh-adaptive strategy which is employed to refine the mesh, stretch and orient the elements in such a way that, along the adaptation process, the mesh becomes aligned with the discontinuities. This mesh adaptation process yields improved results in locating regions of rapid or abrupt variations of the variables, whose location is not known a priori. On the other hand, the proposed mesh adaptation process is generated by minimizing, for a given number of elements in the mesh, a new anisotropic error estimator based on local directional interpolation error and recovering of the second derivatives of the finite element solution. Several adaptive mesh-refinement solutions for interpolation problems are presented in order to show that the proposed optimal adaptive strategy using this anisotropic error estimator recovers optimal and/or superconvergent rates. Finally, applications of this approach to CFD problems are also presented in order to show the computational performance of the proposed optimal adaptive procedure.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0045-7825(99)00200-5</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2000-02, Vol.182 (3), p.379-400
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_27480838
source ScienceDirect Freedom Collection
subjects Adaptive analysis
Computational fluid dynamics
Computational methods in fluid dynamics
Computational techniques
Error estimator
Exact sciences and technology
Finite elements
Finite-element and galerkin methods
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Mathematical methods in physics
Mesh generation
Physics
title Adaptive finite element computational fluid dynamics using an anisotropic error estimator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A03%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20finite%20element%20computational%20fluid%20dynamics%20using%20an%20anisotropic%20error%20estimator&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Almeida,%20Regina%20C.&rft.date=2000-02-18&rft.volume=182&rft.issue=3&rft.spage=379&rft.epage=400&rft.pages=379-400&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/S0045-7825(99)00200-5&rft_dat=%3Cproquest_cross%3E27480838%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-bef703a677d90b6a0a9623f556669108c38a640dc67cb85fbc952d4f0317bd653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27480838&rft_id=info:pmid/&rfr_iscdi=true