Loading…
Advances in Hypoxia-Inducible Factor-1α Stabilizer Deferoxamine in Tissue Engineering
Deferoxamine (DFO) is an iron chelator with FDA approval for the clinical treatment of iron excess. As a well-established stabilizer of hypoxia-inducible factor-1α (HIF-1α), DFO can efficiently upregulate HIF-1α and relevant downstream angiogenic factors, leading to accelerated vascularization. More...
Saved in:
Published in: | Tissue engineering. Part B, Reviews Reviews, 2023-08, Vol.29 (4), p.347-357 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Deferoxamine (DFO) is an iron chelator with FDA approval for the clinical treatment of iron excess. As a well-established stabilizer of hypoxia-inducible factor-1α (HIF-1α), DFO can efficiently upregulate HIF-1α and relevant downstream angiogenic factors, leading to accelerated vascularization. Moreover, as increasing studies have focused on DFO as a hypoxia-mimetic agent in recent years, it has been shown that DFO exhibited multiple functions, including stem cell regulation, immunoregulation, provascularization, and pro-osteogenesis. On the contrary, DFO can bind excess iron ions in wounds of chronic inflammation, while serving as an antioxidant with the characteristic of removing reactive oxygen species. Collectively, these characteristics make DFO a potent modulator in tissue engineering for increasing tissue integration of biomaterials
in vivo
and facilitating wound healing. This review outlines the activity of DFO as a representative hypoxia-mimetic agent in cells as well as the evolution of its application in tissue engineering. It can be concluded that DFO is a medication with tremendous promise and application value in future trends, which can optimize biomaterials and existing tissue engineering techniques for tissue regeneration. |
---|---|
ISSN: | 1937-3368 1937-3376 |
DOI: | 10.1089/ten.teb.2022.0168 |