Loading…

Convolutional neural network based anatomical site identification for laryngoscopy quality control: A multicenter study

Video laryngoscopy is an important diagnostic tool for head and neck cancers. The artificial intelligence (AI) system has been shown to monitor blind spots during esophagogastroduodenoscopy. This study aimed to test the performance of AI-driven intelligent laryngoscopy monitoring assistant (ILMA) fo...

Full description

Saved in:
Bibliographic Details
Published in:American journal of otolaryngology 2023-03, Vol.44 (2), p.103695-103695, Article 103695
Main Authors: Zhu, Ji-Qing, Wang, Mei-Ling, Li, Ying, Zhang, Wei, Li, Li-Juan, Liu, Lin, Zhang, Yan, Han, Cai-Juan, Tie, Cheng-Wei, Wang, Shi-Xu, Wang, Gui-Qi, Ni, Xiao-Guang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Video laryngoscopy is an important diagnostic tool for head and neck cancers. The artificial intelligence (AI) system has been shown to monitor blind spots during esophagogastroduodenoscopy. This study aimed to test the performance of AI-driven intelligent laryngoscopy monitoring assistant (ILMA) for landmark anatomical sites identification on laryngoscopic images and videos based on a convolutional neural network (CNN). The laryngoscopic images taken from January to December 2018 were retrospectively collected, and ILMA was developed using the CNN model of Inception-ResNet-v2 + Squeeze-and-Excitation Networks (SENet). A total of 16,000 laryngoscopic images were used for training. These were assigned to 20 landmark anatomical sites covering six major head and neck regions. In addition, the performance of ILMA in identifying anatomical sites was validated using 4000 laryngoscopic images and 25 videos provided by five other tertiary hospitals. ILMA identified the 20 anatomical sites on the laryngoscopic images with a total accuracy of 97.60 %, and the average sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 100 %, 99.87 %, 97.65 %, and 99.87 %, respectively. In addition, multicenter clinical verification displayed that the accuracy of ILMA in identifying the 20 targeted anatomical sites in 25 laryngoscopic videos from five hospitals was ≥95 %. The proposed CNN-based ILMA model can rapidly and accurately identify the anatomical sites on laryngoscopic images. The model can reflect the coverage of anatomical regions of the head and neck by laryngoscopy, showing application potential in improving the quality of laryngoscopy.
ISSN:0196-0709
1532-818X
DOI:10.1016/j.amjoto.2022.103695