Loading…
Gravity waves on ice-covered water
Gravity waves propagating on the surface of ice‐covered water of finite depth are considered. The ice layer is viewed as a suspension, with an effective viscosity much greater than that of water and a density slightly less than that of water. It is treated as a viscous liquid, and the water beneath...
Saved in:
Published in: | Journal of Geophysical Research 1998-04, Vol.103 (C4), p.7663-7669 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4297-ba220f4b0e70734913a8c45121e2facfd164196ec5a4eb08b5f8d2dd6d50fd583 |
---|---|
cites | cdi_FETCH-LOGICAL-c4297-ba220f4b0e70734913a8c45121e2facfd164196ec5a4eb08b5f8d2dd6d50fd583 |
container_end_page | 7669 |
container_issue | C4 |
container_start_page | 7663 |
container_title | Journal of Geophysical Research |
container_volume | 103 |
creator | Keller, Joseph B. |
description | Gravity waves propagating on the surface of ice‐covered water of finite depth are considered. The ice layer is viewed as a suspension, with an effective viscosity much greater than that of water and a density slightly less than that of water. It is treated as a viscous liquid, and the water beneath it is treated as an inviscid liquid. The linearized motion of gravity waves is analyzed for this two‐layer model, and the dispersion equation is obtained. It is solved numerically for waves of any length. It is also simplified for waves short compared to the layer thickness and for waves long compared to the layer thickness. This equation yields dispersion and strong attenuation, both of which depend upon the effective viscosity of the suspension. |
doi_str_mv | 10.1029/97JC02966 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27537924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16542730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4297-ba220f4b0e70734913a8c45121e2facfd164196ec5a4eb08b5f8d2dd6d50fd583</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWLQH_0ERET2sZiZfm6NstVqKgvh1C2k2C6trV5N-2H9vpKU3dS4Dw_O8Ay8hB0DPgKI-12pYpC3lFukgCJkhUtwmHQo8zyii2iXdGF9pGi4kp9Ahh4Ng5_V02VvYuY-9dtKrnc9cO_fBl-k49WGf7FS2ib673nvk8eryobjORneDm-JilDmOWmVjm75VfEy9oopxDczmjgtA8FhZV5UgOWjpnbDcj2k-FlVeYlnKUtCqFDnbI8er3I_Qfs58nJr3OjrfNHbi21k0qARTGnkCT_4EQYPWQqDGfzNBCo6K0QSerkAX2hiDr8xHqN9tWBqg5qdcsyk3sUfrUBudbapgJ66OGwEROAOWsPMVtqgbv_w9zwwH94VCrpKRrYw6Tv3XxrDhzUjFlDDPtwNT6GH_6aUvDbBvHdiSig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16542730</pqid></control><display><type>article</type><title>Gravity waves on ice-covered water</title><source>Wiley-Blackwell Read & Publish Collection</source><source>Wiley-Blackwell AGU Digital Archive</source><creator>Keller, Joseph B.</creator><creatorcontrib>Keller, Joseph B.</creatorcontrib><description>Gravity waves propagating on the surface of ice‐covered water of finite depth are considered. The ice layer is viewed as a suspension, with an effective viscosity much greater than that of water and a density slightly less than that of water. It is treated as a viscous liquid, and the water beneath it is treated as an inviscid liquid. The linearized motion of gravity waves is analyzed for this two‐layer model, and the dispersion equation is obtained. It is solved numerically for waves of any length. It is also simplified for waves short compared to the layer thickness and for waves long compared to the layer thickness. This equation yields dispersion and strong attenuation, both of which depend upon the effective viscosity of the suspension.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1029/97JC02966</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Marine ; Physics of the oceans ; Surface waves, tides and sea level. Seiches</subject><ispartof>Journal of Geophysical Research, 1998-04, Vol.103 (C4), p.7663-7669</ispartof><rights>Copyright 1998 by the American Geophysical Union.</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4297-ba220f4b0e70734913a8c45121e2facfd164196ec5a4eb08b5f8d2dd6d50fd583</citedby><cites>FETCH-LOGICAL-c4297-ba220f4b0e70734913a8c45121e2facfd164196ec5a4eb08b5f8d2dd6d50fd583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F97JC02966$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F97JC02966$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2214313$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Keller, Joseph B.</creatorcontrib><title>Gravity waves on ice-covered water</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>Gravity waves propagating on the surface of ice‐covered water of finite depth are considered. The ice layer is viewed as a suspension, with an effective viscosity much greater than that of water and a density slightly less than that of water. It is treated as a viscous liquid, and the water beneath it is treated as an inviscid liquid. The linearized motion of gravity waves is analyzed for this two‐layer model, and the dispersion equation is obtained. It is solved numerically for waves of any length. It is also simplified for waves short compared to the layer thickness and for waves long compared to the layer thickness. This equation yields dispersion and strong attenuation, both of which depend upon the effective viscosity of the suspension.</description><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Marine</subject><subject>Physics of the oceans</subject><subject>Surface waves, tides and sea level. Seiches</subject><issn>0148-0227</issn><issn>2169-9275</issn><issn>2156-2202</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWLQH_0ERET2sZiZfm6NstVqKgvh1C2k2C6trV5N-2H9vpKU3dS4Dw_O8Ay8hB0DPgKI-12pYpC3lFukgCJkhUtwmHQo8zyii2iXdGF9pGi4kp9Ahh4Ng5_V02VvYuY-9dtKrnc9cO_fBl-k49WGf7FS2ib673nvk8eryobjORneDm-JilDmOWmVjm75VfEy9oopxDczmjgtA8FhZV5UgOWjpnbDcj2k-FlVeYlnKUtCqFDnbI8er3I_Qfs58nJr3OjrfNHbi21k0qARTGnkCT_4EQYPWQqDGfzNBCo6K0QSerkAX2hiDr8xHqN9tWBqg5qdcsyk3sUfrUBudbapgJ66OGwEROAOWsPMVtqgbv_w9zwwH94VCrpKRrYw6Tv3XxrDhzUjFlDDPtwNT6GH_6aUvDbBvHdiSig</recordid><startdate>19980415</startdate><enddate>19980415</enddate><creator>Keller, Joseph B.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19980415</creationdate><title>Gravity waves on ice-covered water</title><author>Keller, Joseph B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4297-ba220f4b0e70734913a8c45121e2facfd164196ec5a4eb08b5f8d2dd6d50fd583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Marine</topic><topic>Physics of the oceans</topic><topic>Surface waves, tides and sea level. Seiches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keller, Joseph B.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keller, Joseph B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gravity waves on ice-covered water</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>1998-04-15</date><risdate>1998</risdate><volume>103</volume><issue>C4</issue><spage>7663</spage><epage>7669</epage><pages>7663-7669</pages><issn>0148-0227</issn><issn>2169-9275</issn><eissn>2156-2202</eissn><eissn>2169-9291</eissn><abstract>Gravity waves propagating on the surface of ice‐covered water of finite depth are considered. The ice layer is viewed as a suspension, with an effective viscosity much greater than that of water and a density slightly less than that of water. It is treated as a viscous liquid, and the water beneath it is treated as an inviscid liquid. The linearized motion of gravity waves is analyzed for this two‐layer model, and the dispersion equation is obtained. It is solved numerically for waves of any length. It is also simplified for waves short compared to the layer thickness and for waves long compared to the layer thickness. This equation yields dispersion and strong attenuation, both of which depend upon the effective viscosity of the suspension.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/97JC02966</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research, 1998-04, Vol.103 (C4), p.7663-7669 |
issn | 0148-0227 2169-9275 2156-2202 2169-9291 |
language | eng |
recordid | cdi_proquest_miscellaneous_27537924 |
source | Wiley-Blackwell Read & Publish Collection; Wiley-Blackwell AGU Digital Archive |
subjects | Earth, ocean, space Exact sciences and technology External geophysics Marine Physics of the oceans Surface waves, tides and sea level. Seiches |
title | Gravity waves on ice-covered water |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A41%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gravity%20waves%20on%20ice-covered%20water&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Keller,%20Joseph%20B.&rft.date=1998-04-15&rft.volume=103&rft.issue=C4&rft.spage=7663&rft.epage=7669&rft.pages=7663-7669&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/97JC02966&rft_dat=%3Cproquest_cross%3E16542730%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4297-ba220f4b0e70734913a8c45121e2facfd164196ec5a4eb08b5f8d2dd6d50fd583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16542730&rft_id=info:pmid/&rfr_iscdi=true |