Loading…

Gravity waves on ice-covered water

Gravity waves propagating on the surface of ice‐covered water of finite depth are considered. The ice layer is viewed as a suspension, with an effective viscosity much greater than that of water and a density slightly less than that of water. It is treated as a viscous liquid, and the water beneath...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research 1998-04, Vol.103 (C4), p.7663-7669
Main Author: Keller, Joseph B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4297-ba220f4b0e70734913a8c45121e2facfd164196ec5a4eb08b5f8d2dd6d50fd583
cites cdi_FETCH-LOGICAL-c4297-ba220f4b0e70734913a8c45121e2facfd164196ec5a4eb08b5f8d2dd6d50fd583
container_end_page 7669
container_issue C4
container_start_page 7663
container_title Journal of Geophysical Research
container_volume 103
creator Keller, Joseph B.
description Gravity waves propagating on the surface of ice‐covered water of finite depth are considered. The ice layer is viewed as a suspension, with an effective viscosity much greater than that of water and a density slightly less than that of water. It is treated as a viscous liquid, and the water beneath it is treated as an inviscid liquid. The linearized motion of gravity waves is analyzed for this two‐layer model, and the dispersion equation is obtained. It is solved numerically for waves of any length. It is also simplified for waves short compared to the layer thickness and for waves long compared to the layer thickness. This equation yields dispersion and strong attenuation, both of which depend upon the effective viscosity of the suspension.
doi_str_mv 10.1029/97JC02966
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27537924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16542730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4297-ba220f4b0e70734913a8c45121e2facfd164196ec5a4eb08b5f8d2dd6d50fd583</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWLQH_0ERET2sZiZfm6NstVqKgvh1C2k2C6trV5N-2H9vpKU3dS4Dw_O8Ay8hB0DPgKI-12pYpC3lFukgCJkhUtwmHQo8zyii2iXdGF9pGi4kp9Ahh4Ng5_V02VvYuY-9dtKrnc9cO_fBl-k49WGf7FS2ib673nvk8eryobjORneDm-JilDmOWmVjm75VfEy9oopxDczmjgtA8FhZV5UgOWjpnbDcj2k-FlVeYlnKUtCqFDnbI8er3I_Qfs58nJr3OjrfNHbi21k0qARTGnkCT_4EQYPWQqDGfzNBCo6K0QSerkAX2hiDr8xHqN9tWBqg5qdcsyk3sUfrUBudbapgJ66OGwEROAOWsPMVtqgbv_w9zwwH94VCrpKRrYw6Tv3XxrDhzUjFlDDPtwNT6GH_6aUvDbBvHdiSig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16542730</pqid></control><display><type>article</type><title>Gravity waves on ice-covered water</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>Wiley-Blackwell AGU Digital Archive</source><creator>Keller, Joseph B.</creator><creatorcontrib>Keller, Joseph B.</creatorcontrib><description>Gravity waves propagating on the surface of ice‐covered water of finite depth are considered. The ice layer is viewed as a suspension, with an effective viscosity much greater than that of water and a density slightly less than that of water. It is treated as a viscous liquid, and the water beneath it is treated as an inviscid liquid. The linearized motion of gravity waves is analyzed for this two‐layer model, and the dispersion equation is obtained. It is solved numerically for waves of any length. It is also simplified for waves short compared to the layer thickness and for waves long compared to the layer thickness. This equation yields dispersion and strong attenuation, both of which depend upon the effective viscosity of the suspension.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1029/97JC02966</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Marine ; Physics of the oceans ; Surface waves, tides and sea level. Seiches</subject><ispartof>Journal of Geophysical Research, 1998-04, Vol.103 (C4), p.7663-7669</ispartof><rights>Copyright 1998 by the American Geophysical Union.</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4297-ba220f4b0e70734913a8c45121e2facfd164196ec5a4eb08b5f8d2dd6d50fd583</citedby><cites>FETCH-LOGICAL-c4297-ba220f4b0e70734913a8c45121e2facfd164196ec5a4eb08b5f8d2dd6d50fd583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F97JC02966$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F97JC02966$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2214313$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Keller, Joseph B.</creatorcontrib><title>Gravity waves on ice-covered water</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>Gravity waves propagating on the surface of ice‐covered water of finite depth are considered. The ice layer is viewed as a suspension, with an effective viscosity much greater than that of water and a density slightly less than that of water. It is treated as a viscous liquid, and the water beneath it is treated as an inviscid liquid. The linearized motion of gravity waves is analyzed for this two‐layer model, and the dispersion equation is obtained. It is solved numerically for waves of any length. It is also simplified for waves short compared to the layer thickness and for waves long compared to the layer thickness. This equation yields dispersion and strong attenuation, both of which depend upon the effective viscosity of the suspension.</description><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Marine</subject><subject>Physics of the oceans</subject><subject>Surface waves, tides and sea level. Seiches</subject><issn>0148-0227</issn><issn>2169-9275</issn><issn>2156-2202</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWLQH_0ERET2sZiZfm6NstVqKgvh1C2k2C6trV5N-2H9vpKU3dS4Dw_O8Ay8hB0DPgKI-12pYpC3lFukgCJkhUtwmHQo8zyii2iXdGF9pGi4kp9Ahh4Ng5_V02VvYuY-9dtKrnc9cO_fBl-k49WGf7FS2ib673nvk8eryobjORneDm-JilDmOWmVjm75VfEy9oopxDczmjgtA8FhZV5UgOWjpnbDcj2k-FlVeYlnKUtCqFDnbI8er3I_Qfs58nJr3OjrfNHbi21k0qARTGnkCT_4EQYPWQqDGfzNBCo6K0QSerkAX2hiDr8xHqN9tWBqg5qdcsyk3sUfrUBudbapgJ66OGwEROAOWsPMVtqgbv_w9zwwH94VCrpKRrYw6Tv3XxrDhzUjFlDDPtwNT6GH_6aUvDbBvHdiSig</recordid><startdate>19980415</startdate><enddate>19980415</enddate><creator>Keller, Joseph B.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19980415</creationdate><title>Gravity waves on ice-covered water</title><author>Keller, Joseph B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4297-ba220f4b0e70734913a8c45121e2facfd164196ec5a4eb08b5f8d2dd6d50fd583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Marine</topic><topic>Physics of the oceans</topic><topic>Surface waves, tides and sea level. Seiches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keller, Joseph B.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keller, Joseph B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gravity waves on ice-covered water</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>1998-04-15</date><risdate>1998</risdate><volume>103</volume><issue>C4</issue><spage>7663</spage><epage>7669</epage><pages>7663-7669</pages><issn>0148-0227</issn><issn>2169-9275</issn><eissn>2156-2202</eissn><eissn>2169-9291</eissn><abstract>Gravity waves propagating on the surface of ice‐covered water of finite depth are considered. The ice layer is viewed as a suspension, with an effective viscosity much greater than that of water and a density slightly less than that of water. It is treated as a viscous liquid, and the water beneath it is treated as an inviscid liquid. The linearized motion of gravity waves is analyzed for this two‐layer model, and the dispersion equation is obtained. It is solved numerically for waves of any length. It is also simplified for waves short compared to the layer thickness and for waves long compared to the layer thickness. This equation yields dispersion and strong attenuation, both of which depend upon the effective viscosity of the suspension.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/97JC02966</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research, 1998-04, Vol.103 (C4), p.7663-7669
issn 0148-0227
2169-9275
2156-2202
2169-9291
language eng
recordid cdi_proquest_miscellaneous_27537924
source Wiley-Blackwell Read & Publish Collection; Wiley-Blackwell AGU Digital Archive
subjects Earth, ocean, space
Exact sciences and technology
External geophysics
Marine
Physics of the oceans
Surface waves, tides and sea level. Seiches
title Gravity waves on ice-covered water
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A41%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gravity%20waves%20on%20ice-covered%20water&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Keller,%20Joseph%20B.&rft.date=1998-04-15&rft.volume=103&rft.issue=C4&rft.spage=7663&rft.epage=7669&rft.pages=7663-7669&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/97JC02966&rft_dat=%3Cproquest_cross%3E16542730%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4297-ba220f4b0e70734913a8c45121e2facfd164196ec5a4eb08b5f8d2dd6d50fd583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16542730&rft_id=info:pmid/&rfr_iscdi=true