Loading…

Core spectroscopy of oxazole

We have measured, analyzed, and simulated the ground state valence photoelectron spectrum, x-ray absorption (XA) spectrum, x-ray photoelectron (XP) spectrum as well as normal and resonant Auger–Meitner electron (AE) spectrum of oxazole at the carbon, oxygen, and nitrogen K-edge in order to understan...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2022-12, Vol.157 (21), p.214305-214305
Main Authors: Schnack-Petersen, Anna Kristina, Tenorio, Bruno Nunes Cabral, Coriani, Sonia, Decleva, Piero, Troß, Jan, Ramasesha, Krupa, Coreno, Marcello, Totani, Roberta, Röder, Anja
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have measured, analyzed, and simulated the ground state valence photoelectron spectrum, x-ray absorption (XA) spectrum, x-ray photoelectron (XP) spectrum as well as normal and resonant Auger–Meitner electron (AE) spectrum of oxazole at the carbon, oxygen, and nitrogen K-edge in order to understand its electronic structure. Experimental data are compared to theoretical calculations performed at the coupled cluster, restricted active space perturbation theory to second-order and time-dependent density functional levels of theory. We demonstrate (1) that both N and O K-edge XA spectra are sensitive to the amount of dynamical electron correlation included in the theoretical description and (2) that for a complete description of XP spectra, additional orbital correlation and orbital relaxation effects need to be considered. The normal AE spectra are dominated by a singlet excitation channel and well described by theory. The resonant AE spectra, however, are more complicated. While the participator decay channels, dominating at higher kinetic energies, are well described by coupled cluster theory, spectator channels can only be described satisfactorily using a method that combines restricted active space perturbation theory to second order for the bound part and a one-center approximation for the continuum.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0122088