Loading…
A cytotoxic triterpenoid from a Periplaneta americana-derived, Gordonia hongkongensis WA12-1-1
The secondary metabolites produced by microorganisms are a source of novel compounds with antitumor activities. In this study, we isolated biologically active secondary metabolites produced by microorganisms in the intestinal tract of Periplaneta americana. Based on the 16S rRNA gene sequencing, Gor...
Saved in:
Published in: | FEMS microbiology letters 2022-02, Vol.369 (1) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The secondary metabolites produced by microorganisms are a source of novel compounds with antitumor activities. In this study, we isolated biologically active secondary metabolites produced by microorganisms in the intestinal tract of Periplaneta americana. Based on the 16S rRNA gene sequencing, Gordonia hongkongensis WA12-1-1 was identified as the main microorganisms in the intestinal tract of P. americana. The obtained sequence was deposited in the National Center for Biotechnology Information (NCBI) database under the accession number MZ348554. The isolated secondary metabolites were separated and purified by thin layer chromatography, silica gel column chromatography, Sephadex column chromatography, open octadecyl silane column chromatography, high-performance liquid chromatography (HPLC), and semipreparative HPLC. Next, the structure of individual compounds was determined by ultraviolet spectroscopy, nuclear magnetic resonance, and mass spectrometry. A total of 20 compounds were isolated from the secondary metabolites produced by G. hongkongensis WA12-1-1. A total of 12 compounds were obtained from the crude ethyl acetate extract of the culture supernatant and eight from the cellular fraction. Compound 1 was identified as a triterpenoid named gordonterpene and showed cytotoxicity against A549 and HepG2 cell lines. These findings form a basis for further studies on the bioactivity of gordonterpene to tumor cells. |
---|---|
ISSN: | 1574-6968 1574-6968 |
DOI: | 10.1093/femsle/fnac121 |